Age-associated changes in miRNA profile of bovine follicular fluid

in Reproduction
Authors:
Shuta Nagata Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Shuta Nagata in
Current site
Google Scholar
PubMed
Close
,
Yuki Inoue Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Yuki Inoue in
Current site
Google Scholar
PubMed
Close
,
Takuya Sato Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Takuya Sato in
Current site
Google Scholar
PubMed
Close
,
Keisuke Tanaka Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Keisuke Tanaka in
Current site
Google Scholar
PubMed
Close
,
Akihisa Shinozawa Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Akihisa Shinozawa in
Current site
Google Scholar
PubMed
Close
,
Komei Shirasuna Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Komei Shirasuna in
Current site
Google Scholar
PubMed
Close
, and
Hisatala Iwata Tokyo University of Agriculture, Funako, Atsugi, Japan

Search for other papers by Hisatala Iwata in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7238-8997

Correspondence should be addressed to H Iwata; Email: h1iwata@nodai.ac.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

This study shows that ageing affects miRNA profiles in follicular fluid, and an miRNA that is highly abundant in the follicular fluid of young cows supports the growth of oocytes derived from early antral follicles.

Abstract

We examined age-associated changes in miRNA profiles in the follicular fluid (FF) of cows. The role of miR-19b, which is abundant in the FF of young cows, in in vitro growth of early antral follicles (EAFs)-derived oocytes was assessed. FF was collected from the antral follicles of young (20–40 months) and aged (>120 months) cows. The miRNA profiles were similar between the FF of both age groups, whereas the abundance of some miRNAs differed between these samples. The miRNA profiles in granulosa cells (GCs) and the spent culture medium of oocyte–GC complexes (OGCs) derived from EAFs were distinct. Some miRNA groups overlapped among the GCs, culture media, and FFs. miR-19b was highly abundant in the FF of young cows, GCs, and culture medium. The supplementation of OGC culture medium with miR-19b increased the diameter, acetylation levels, and fertilisation ability of the oocytes. To assess whether miR-19b was functional in the GCs, a dual-luciferase assay, suppression of target protein, and RNA-sequencing of the GCs followed by functional annotation of the differentially expressed genes (DEGs) were conducted. Functional annotation of the DEGs suggested that miR-19b influences genes associated with FoxO signalling, endocytosis, and NR3C1 in GCs. These results suggest that in FFs, ageing affects the abundance of miRNAs that have important roles in oocyte development.

 

  • Collapse
  • Expand
  • Alam MH & Miyano T 2020 Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology 19 1323. (https://doi.org/10.1002/rmb2.12292)

  • Baddela VS, Sharma A, Michaelis M & Vanselow J 2020 HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Scientific Reports 10 3906. (https://doi.org/10.1038/s41598-020-60935-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baerwald AR, Adams GP & Pierson RA 2003 Characterization of ovarian follicular wave dynamics in women. Biology of Reproduction 69 10231031. (https://doi.org/10.1095/biolreprod.103.017772)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouet PE, Boueilh T, de la Barca JMC, Boucret L, Blanchard S, Ferré-L'Hotellier V, Jeannin P, Descamps P, Procaccio V & Reynier P et al.2020 The cytokine profile of follicular fluid changes during ovarian ageing. Journal of Gynecology Obstetrics and Human Reproduction 49 101704. (https://doi.org/10.1016/j.jogoh.2020.101704)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM & Bouma GJ 2012 2012 cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biology of Reproduction 86 71. (https://doi.org/10.1095/biolreprod.111.093252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Silveira JC, Andrade GM, Del Collado M, Sampaio RV, Sangalli JR, Silva LA, Pinaffi FVL, Jardim IB, Cesar MC & Nogueira MFG et al.2017 Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS ONE 12 e0179451. (https://doi.org/10.1371/journal.pone.0179451)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Ávila ACFCM, Bridi A, Andrade GM, Del Collado M, Sangalli JR, Nociti RP, da Silva Junior WA, Bastien A, Robert C & Meirelles FV et al.2020 Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation. Biology of Reproduction 102 362375. (https://doi.org/10.1093/biolre/ioz177)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duarte AB, Araújo VR, Chaves RN, Silva GM, Magalhães-Padilha DM, Satrapa RA, Donato MA, Peixoto CA, Campello CC & Matos MH et al.2012 Bovine dominant follicular fluid promotes the in vitro development of goat preantral follicles. Reproduction, Fertility, and Development 24 490500. (https://doi.org/10.1071/RD11176)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gebremedhn S, Gad A, Aglan HS, Laurincik J, Prochazka R, Salilew-Wondim D, Hoelker M, Schellander K & Tesfaye D 2020 Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Scientific Reports 10 15824. (https://doi.org/10.1038/s41598-020-72706-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hara S, Aoki S, Nagata M, Shirasuna K, Noguchi T & Iwata H 2020 Xanthan gum and locust bean gum substrate improves bovine embryo development. Reproduction in Domestic Animals 55 11241131. (https://doi.org/10.1111/rda.13750)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hashemitabar M, Bahmanzadeh M, Mostafaie A, Orazizadeh M, Farimani M & Nikbakht R 2014 A proteomic analysis of human follicular fluid: comparison between younger and older women with normal FSH levels. International Journal of Molecular Sciences 15 1751817540. (https://doi.org/10.3390/ijms151017518)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu Y, Cai MC, Wang L, Zhang TH, Luo ZG, Zhang GW & Zuo FY 2018 MiR-1246 is upregulated and regulates lung cell apoptosis during heat stress in feedlot cattle. Cell Stress and Chaperones 23 12191228. (https://doi.org/10.1007/s12192-018-0927-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huan T, Chen G, Liu C, Bhattacharya A, Rong J, Chen BH, Seshadri S, Tanriverdi K, Freedman JE & Larson MG et al.2018 Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell 17 e12687. (https://doi.org/10.1111/acel.12687)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K & Iwata H 2020 Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. Journal of Assisted Reproduction and Genetics 37 25692579. (https://doi.org/10.1007/s10815-020-01909-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishiguro A, Sakai H, Kansaku K, Shirasuna K & Iwata H 2020 Effect of cryopreservation on the ability of granulosa cells to support in vitro development of oocytes derived from porcine early antral follicles. Theriogenology 143 5056. (https://doi.org/10.1016/j.theriogenology.2019.11.038)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Itami N, Kawahara-Miki R, Kawana H, Endo M, Kuwayama T & Iwata H 2014 Age-associated changes in bovine oocytes and granulosa cell complexes collected from early antral follicles. Journal of Assisted Reproduction and Genetics 31 10791088. (https://doi.org/10.1007/s10815-014-0251-y)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T & Monji Y 2011 Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reproduction, Fertility, and Development 23 424432. (https://doi.org/10.1071/RD10133)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiajie T, Yanzhou Y, Hoi-Hung AC, Zi-Jiang C & Wai-Yee C 2017 Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Scientific Reports 7 41304. (https://doi.org/10.1038/srep41304)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jung HJ, Lee KP, Milholland B, Shin YJ, Kang JS, Kwon KS & Suh Y 2017 Comprehensive miRNA profiling of skeletal muscle and serum in induced and normal mouse muscle atrophy During aging. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 72 14831491. (https://doi.org/10.1093/gerona/glx025)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA & Hauser R 2017 Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. Journal of Assisted Reproduction and Genetics 34 525533. (https://doi.org/10.1007/s10815-017-0876-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maidarti M, Clarkson YL, McLaughlin M, Anderson RA & Telfer EE 2019 Inhibition of PTEN activates bovine non-growing follicles in vitro but increases DNA damage and reduces DNA repair response. Human Reproduction 34 297307. (https://doi.org/10.1093/humrep/dey354)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malhi PS, Adams GP & Singh J 2005 Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biology of Reproduction 73 4553. (https://doi.org/10.1095/biolreprod.104.038745)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malhi PS, Adams GP, Pierson RA & Singh J 2006 Bovine model of reproductive aging: response to ovarian synchronization and superstimulation. Theriogenology 66 12571266. (https://doi.org/10.1016/j.theriogenology.2006.02.051)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, Bollati V, Baccarelli AA, Hauser R & Machtinger R 2018 Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Scientific Reports 8 17036. (https://doi.org/10.1038/s41598-018-35379-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Metoki T, Iwata H, Itoh M, Kasai M, Takajyo A, Suzuki A, Kuwayama T & Monji Y 2008 Effects of follicular fluids on the growth of porcine preantral follicle and oocyte. Zygote 16 239247. (https://doi.org/10.1017/S0967199408004711)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munakata Y, Kawahara-Miki R, Shiratsuki S, Tasaki H, Itami N, Shirasuna K, Kuwayama T & Iwata H 2016 Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. Journal of Reproduction and Development 62 359366. (https://doi.org/10.1262/jrd.2016-022)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munakata Y, Kawahara-Miki R, Shirasuna K, Kuwayama T & Iwata H 2017 Polyacrylamide gel as a culture substrate improves in vitro oocyte growth from porcine early antral follicles. Molecular Reproduction and Development 84 4454. (https://doi.org/10.1002/mrd.22758)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagata S, Tatematsu K, Kansaku K, Inoue Y, Kobayashi M, Shirasuna K & Iwata H 2020 Effect of aging on mitochondria and metabolism of bovine granulosa cells. Journal of Reproduction and Development 66 547554. (https://doi.org/10.1262/jrd.2020-071)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagata S, Tatematsu K, Yamaguchi H, Inoue Y, Tanaka K, Tasaki H, Shirasuna K & Iwata H 2021 Effect of docosahexaenoic acid on in vitro growth of bovine oocytes. Reproductive Medicine and Biology 20 485493. (https://doi.org/10.1002/rmb2.12403)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pontes JT, Maside C, Lima LF, Magalhães-Padilha DM, Padilha RT, Matos MHT, Figueiredo JR & Campello CC 2019 Immunolocalization for glucocorticoid receptor and effect of cortisol on in vitro development of preantral follicles. Veterinary and Animal Science 7 100060. (https://doi.org/10.1016/j.vas.2019.100060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ravisankar S, Hanna CB, Brooks KE, Murphy MJ, Redmayne N, Ryu J, Kinchen JM, Chavez SL & Hennebold JD 2021 Metabolomics analysis of follicular fluid coupled with oocyte aspiration reveals importance of glucocorticoids in primate periovulatory follicle competency. Scientific Reports 11 6506. (https://doi.org/10.1038/s41598-021-85704-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugiyama M, Sumiya M, Shirasuna K, Kuwayama T & Iwata H 2016 Addition of granulosa cell mass to the culture medium of oocytes derived from early antral follicles increases oocyte growth, ATP content, and acetylation of H4K12. Zygote 24 848856. (https://doi.org/10.1017/S0967199416000198)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, Monji Y, Kuwayama T & Iwata H 2013a Age-associated changes in gene expression and developmental competence of bovine oocytes, and a possible countermeasure against age-associated events. Molecular Reproduction and Development 80 508521. (https://doi.org/10.1002/mrd.22187)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeo S, Goto H, Kuwayama T, Monji Y & Iwata H 2013b Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. Journal of Reproduction and Development 59 174179. (https://doi.org/10.1262/jrd.2012-148)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeo S, Kimura K, Shirasuna K, Kuwayama T & Iwata H 2017 Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reproduction, Fertility, and Development 29 759767. (https://doi.org/10.1071/RD15228)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tesfaye D, Hailay T, Salilew-Wondim D, Hoelker M, Bitseha S & Gebremedhn S 2020 Extracellular vesicle mediated molecular signaling in ovarian follicle: implication for oocyte developmental competence. Theriogenology 150 7074. (https://doi.org/10.1016/j.theriogenology.2020.01.075)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Umezu T, Ohyashiki K, Kuroda M & Ohyashiki JH 2013 Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 32 27472755. (https://doi.org/10.1038/onc.2012.295)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Velthut-Meikas A, Simm J, Tuuri T, Tapanainen JS, Metsis M & Salumets A 2013 Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Molecular Endocrinology 27 11281141. (https://doi.org/10.1210/me.2013-1058)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang F, Chang HM, Yi Y, Li H & Leung PCK 2019 TGF-β1 promotes hyaluronan synthesis by upregulating hyaluronan synthase 2 expression in human granulosa-lutein cells. Cellular Signalling 63 109392. (https://doi.org/10.1016/j.cellsig.2019.109392)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X, Meng K, Wang H, Wang Y, Zhao Y, Kang J, Zhang Y & Quan F 2021 Identification of small extracellular vesicle subtypes in follicular fluid: insights into the function and miRNA profiles. Journal of Cellular Physiology 236 56335645. (https://doi.org/10.1002/jcp.30251)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y & Kuwayama T 2010 Effect of maternal age on the developmental competence and progression of nuclear maturation in bovine oocytes. Molecular Reproduction and Development 77 595604. (https://doi.org/10.1002/mrd.21188)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang J, Zhang Y, Xu X, Li J, Yuan F, Bo S, Qiao J, Xia G, Su Y & Zhang M 2019 Transforming growth factor-β is involved in maintaining oocyte meiotic arrest by promoting natriuretic peptide type C expression in mouse granulosa cells. Cell Death and Disease 10 558. (https://doi.org/10.1038/s41419-019-1797-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang W, Zhang J, Xu B, He Y, Liu W, Li J, Zhang S, Lin X, Su D & Wu T et al.2020 HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice. Molecular Therapy 28 12001213. (https://doi.org/10.1016/j.ymthe.2020.02.003)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng X, Price CA, Tremblay Y, Lussier JG & Carrière PD 2008 Role of transforming growth factor-beta1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells. Reproduction 136 447457. (https://doi.org/10.1530/REP-07-0316)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Y, Chen KL, Zheng XM, Li HX & Wang GL 2014 Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows. Cell Stress and Chaperones 19 973981. (https://doi.org/10.1007/s12192-014-0521-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation