Inhibition of METTL5 improves preimplantation development of mouse somatic cell nuclear transfer embryos

in Reproduction
Authors:
Luchun Zhang Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Luchun Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5497-8173
,
Meng Yuan Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Meng Yuan in
Current site
Google Scholar
PubMed
Close
,
Xingwei Huang Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Xingwei Huang in
Current site
Google Scholar
PubMed
Close
,
Qianzi Cao Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Qianzi Cao in
Current site
Google Scholar
PubMed
Close
,
Shaogang Huang Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Shaogang Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1654-2459
,
Ruizhen Sun Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Ruizhen Sun in
Current site
Google Scholar
PubMed
Close
, and
Lei Lei Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Search for other papers by Lei Lei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5239-7009

Correspondence should be addressed to L Lei; Email: lei086@ems.hrbmu.edu.cn

*(L Zhang and M Yuan contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Several factors affect the reprogramming efficiency of nuclear transfer embryos. This study shows that inhibiting 18S rRNA m6A methyltransferase METTL5 during nuclear transfer can improve the developmental rate of nuclear transfer embryos.

Abstract

N6-methyladenosine (m6A) is one of the most important epigenetic modifications in eukaryotic RNAs, which regulates development and diseases. It is identified by several proteins. Methyltransferase-like 5 (METTL5), an enzyme that methylates 18S rRNA m6A, controls the translation of proteins and regulates pluripotency in embryonic stem cells. However, the functions of METTL5 in embryonic development have not been explored. Here, we found that Mettl5 was upregulated in somatic cell nuclear transfer (SCNT) embryos compared with normal fertilized embryos. Therefore, we hypothesized that METTL5 knockdown during the early stage of SCNT would improve the developmental rate of SCNT embryos. Notably, injection of Mettl5 siRNA (si-Mettl5) into enucleated oocytes during nuclear transfer increased the rate of development and the number of cells in blastocysts. Moreover, inhibition of METTL5 reduced the activity of phosphorylated ribosomal protein S6, decreased the levels of the repressive histone modification H3K27me3 and increased the expression of activating histone modifications H3K27ac and H3K4me3 and mRNA levels of some 2-cell-specific genes. These results expand our understanding of the role of METTL5 in early embryonic development and provide a novel idea for improving the efficiency of nuclear transfer cloning.

 

  • Collapse
  • Expand
  • Aguilo F, Zhang F, Sancho A, Fidalgo M, Di Cecilia S, Vashisht A, Lee DF, Chen CH, Rengasamy M & Andino B et al.2015 Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17 689704. (https://doi.org/10.1016/j.stem.2015.09.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B & Daneshvar K et al.2014 m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15 707719. (https://doi.org/10.1016/j.stem.2014.09.019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao Z, Zhang L, Hong R, Li Y, Wang Y, Qi X, Ning W, Gao D, Xu T & Ma Y et al.2021 METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst development double dagger. Biology of Reproduction 104 10081021. (https://doi.org/10.1093/biolre/ioab022)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y & Yan Z et al.2022 Genetic regulation of N6-Methyladenosine-RNA in mammalian gametogenesis and embryonic development. Frontiers in Cell and Developmental Biology 10 819044. (https://doi.org/10.3389/fcell.2022.819044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen C, Liu W, Guo J, Liu Y, Liu X, Liu J, Dou X, Le R, Huang Y & Li C et al.2021 Nuclear m 6 A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein and Cell 12 455474. (https://doi.org/10.1007/s13238-021-00837-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao S, Mcgarry M, Latham KE & Wilmut I 2003 Cloning of mice by nuclear transfer. Cloning and Stem Cells 5 287294. (https://doi.org/10.1089/153623003772032790)

  • Guo M, Liu X, Zheng X, Huang Y & Chen X 2017 m(6)A RNA modification determines cell fate by regulating mRNA degradation. Cell Reprogram 19 225231. (https://doi.org/10.1089/cell.2016.0041)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G & Auer F et al.2019 Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567 414419. (https://doi.org/10.1038/s41586-019-1016-7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang X, Hu X, Jiang Q, Cao Q, Wu Y & Lei L 2021 Functional study of distinct domains of Dux in improving mouse SCNT embryonic development dagger. Biology of Reproduction 105 10891103. (https://doi.org/10.1093/biolre/ioab141)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ignatova VV, Stolz P, Kaiser S, Gustafsson TH, Lastres PR, Sanz-Moreno A, Cho YL, Amarie OV, Aguilar-Pimentel A & Klein-Rodewald T et al.2020 The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development 34 715729. (https://doi.org/10.1101/gad.333369.119)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ & O'carroll D 2017 The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Molecular Cell 67 1059 .e41067.e4. (https://doi.org/10.1016/j.molcel.2017.08.003)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kresoja-Rakic J & Santoro R 2019 Nucleolus and rRNA gene chromatin in early embryo development. Trends in Genetics 35 868879. (https://doi.org/10.1016/j.tig.2019.06.005)

  • Leismann J, Spagnuolo M, Pradhan M, Wacheul L, Vu MA, Musheev M, Mier P, Andrade-Navarro MA, Graille M & Niehrs C et al.2020 The 18S ribosomal RNA m 6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Reports 21 e49443. (https://doi.org/10.15252/embr.201949443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao C, Pang N, Liu Z & Lei L 2020 Transient inhibition of rDNA transcription in donor cells improves ribosome biogenesis and preimplantation development of embryos derived from somatic cell nuclear transfer. FASEB Journal 34 82838295. (https://doi.org/10.1096/fj.202000025RR)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu W, Liu X, Wang C, Gao Y, Gao R, Kou X, Zhao Y, Li J, Wu Y & Xiu W et al.2016 Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discovery 2 16010. (https://doi.org/10.1038/celldisc.2016.10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Gao M, Xu S, Chen Y, Wu K, Liu H, Wang J, Yang X, Wang J & Liu W et al.2020 YTHDF2/3 are required for somatic reprogramming through different RNA deadenylation pathways. Cell Reports 32 108120. (https://doi.org/10.1016/j.celrep.2020.108120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A & Zhang Y 2014 Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159 884895. (https://doi.org/10.1016/j.cell.2014.09.055)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard EM, Polla DL, Assir MZ, Contreras M, Shahzad M, Khan AA, Razzaq A, Akram J, Tarar MN & Blanpied TA et al.2019 Bi-allelic variants in METTL5 cause autosomal-recessive intellectual disability and microcephaly. American Journal of Human Genetics 105 869878. (https://doi.org/10.1016/j.ajhg.2019.09.007)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rong B, Zhang Q, Wan J, Xing S, Dai R, Li Y, Cai J, Xie J, Song Y & Chen J et al.2020 Ribosome 18S m(6)A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth. Cell Reports 33 108544. (https://doi.org/10.1016/j.celrep.2020.108544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shubina MY, Arifulin EA, Sorokin DV, Sosina MA, Tikhomirova MA, Serebryakova MV, Smirnova T, Sokolov SS, Musinova YR & Sheval EV 2020 The GAR domain integrates functions that are necessary for the proper localization of fibrillarin (FBL) inside eukaryotic cells. PeerJ 8 e9029. (https://doi.org/10.7717/peerj.9029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR & Graille M et al.2019 The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Research 47 77197733. (https://doi.org/10.1093/nar/gkz619)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao Y, Wang Y, Tang Q, Wei L, Zhang X & Jia G 2018 An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6)-methyladenosine modification. Angewandte Chemie 57 1599516000. (https://doi.org/10.1002/anie.201807942)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xing M, Liu Q, Mao C, Zeng H, Zhang X, Zhao S, Chen L, Liu M, Shen B & Guo X et al.2020 The 18S rRNA m6A methyltransferase METTL5 promotes mouse embryonic stem cell differentiation. EMBO Reports 21 e49863. (https://doi.org/10.15252/embr.201949863)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L, Song L, Liu X, Bai L & Li G 2018 KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Reports 19 e46240. (https://doi.org/10.15252/embr.201846240)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu H, Sun Z, Tan T, Pan H, Zhao J, Zhang L, Chen J, Lei A, Zhu Y & Chen L et al.2021 rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nature Communications 12 6365. (https://doi.org/10.1038/s41467-021-26576-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang G, Xu Y, Wang X, Zhu Y, Wang L, Zhang W, Wang Y, Gao Y, Wu X & Cheng Y et al.2022 Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay. Nature Communications 13 859. (https://doi.org/10.1038/s41467-022-28547-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK & He C 2017 m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542 475478. (https://doi.org/10.1038/nature21355)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Z, Jia JL, Bou G, Hu LL, Wang ZD, Shen XH, Shan ZY, Shen JL, Liu ZH & Lei L 2012 rRNA genes are not fully activated in mouse somatic cell nuclear transfer embryos. Journal of Biological Chemistry 287 1994919960. (https://doi.org/10.1074/jbc.M112.355099)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL & Song SH et al.2013 ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell 49 1829. (https://doi.org/10.1016/j.molcel.2012.10.015)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation