Nicotinamide riboside supplementation ameliorated post-ovulatory oocyte quality decline

in Reproduction
Authors:
Hui Li Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Search for other papers by Hui Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6190-6266
,
Huan Wang Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Search for other papers by Huan Wang in
Current site
Google Scholar
PubMed
Close
,
Jianmin Xu Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Search for other papers by Jianmin Xu in
Current site
Google Scholar
PubMed
Close
,
Xinxin Zeng Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Search for other papers by Xinxin Zeng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5960-6881
,
Yingpu Sun Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Search for other papers by Yingpu Sun in
Current site
Google Scholar
PubMed
Close
, and
Qingling Yang Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Search for other papers by Qingling Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9187-7961

Correspondence should be addressed to Q Yang or Y Sun; Email: qingling531@163.com or syp2008@vip.sina.com
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Oocyte quality and its NAD+ level decrease with time during in vitro culture. This study shows that nicotinamide riboside (NR) supplementation improves early embryonic development potential in post-ovulatory oocytes by decreasing the reactive oxygen species (ROS) levels and reducing DNA damage and apoptosis which could potentially increase the success rate of assisted reproductive technology (ART).

Abstract

The quality of post-ovulatory oocytes deteriorates over time, impacting the outcome of early embryonic development during human ART. We and other groups have found that NAD+, a prominent redox cofactor and enzyme substrate, decreases in both aging ovaries and oocytes. In this study, we found that the NAD+ levels decreased in the post-ovulatory mouse oocytes during in vitro culture and this decrease was partly prevented by NR supplementation. NR treatmenty restored MII oocyte quality and enhanced the early embryonic development potential of post-ovulatory oocytes via alleviating mitochondrial dysfunction and maintaining normal spindle/chromosome structure. Also, treatment with NR decreased ROS levels and reduced DNA damage and apoptosis in post-ovulatory oocytes. Taken together, our findings indicated that NR supplementation increases the oocyte quality and early embryonic development potential in post-ovulatory oocytes which could potentially increase the success rate of ART.

Supplementary Materials

 

  • Collapse
  • Expand
  • Agarwal A & Majzoub A 2017 Role of antioxidants in assisted reproductive techniques. World Journal of Men’s Health 35 7793. (https://doi.org/10.5534/wjmh.2017.35.2.77)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z & Baur J et al.2021 Role of NAD(+) in regulating cellular and metabolic signaling pathways. Molecular Metabolism 49 101195. (https://doi.org/10.1016/j.molmet.2021.101195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM & Habibalahi A et al.2020 NAD(+) repletion rescues female fertility during reproductive aging. Cell Reports 30 1670–1681.e7. (https://doi.org/10.1016/j.celrep.2020.01.058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW & Singh KK 2020 Mitochondria in ovarian aging and reproductive longevity. Ageing Research Reviews 63 101168. (https://doi.org/10.1016/j.arr.2020.101168)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chu X & Raju RP 2022 Regulation of NAD+ metabolism in aging and disease. Metabolism: Clinical and Experimental 126 154923. (https://doi.org/10.1016/j.metabol.2021.154923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Covarrubias AJ, Perrone R, Grozio A & Verdin E 2021 NAD(+) metabolism and its roles in cellular processes during ageing. Nature Reviews. Molecular Cell Biology 22 119141. (https://doi.org/10.1038/s41580-020-00313-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davalli P, Mitic T, Caporali A, Lauriola A & D'Arca D 2016 ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Medicine and Cellular Longevity 2016 3565127. (https://doi.org/10.1155/2016/3565127)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dou X, Sun Y, Li J, Zhang J, Hao D, Liu W, Wu R, Kong F, Peng X & Li J 2017 Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell 16 825836. (https://doi.org/10.1111/acel.12617)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV & Jenkinson N et al.2019 Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Reports 28 1717–1728.e6. (https://doi.org/10.1016/j.celrep.2019.07.043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, Lu H, Shamanna RA, Kalyanasundaram S, Bollineni RC & Wilson MA et al.2016 NAD(+) replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metabolism 24 566581. (https://doi.org/10.1016/j.cmet.2016.09.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP & Bohr VA 2017 NAD(+) in aging: molecular mechanisms and translational implications. Trends in Molecular Medicine 23 899916. (https://doi.org/10.1016/j.molmed.2017.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hikosaka K, Yaku K, Okabe K & Nakagawa T 2021 Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutritional Neuroscience 24 371383. (https://doi.org/10.1080/1028415X.2019.1637504)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ji LL & Yeo D 2021 NAD(+) deficit, protein acetylation and muscle aging. Aging (Albany NY) 13 1454614548. (https://doi.org/10.18632/aging.203177)

  • Kadenbach B 2021 Complex IV - the regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 58 296302. (https://doi.org/10.1016/j.mito.2020.10.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim HN, Ponte F, Warren A, Ring R, Iyer S, Han L & Almeida M 2021 A decrease in NAD(+) contributes to the loss of osteoprogenitors and bone mass with aging. npj Aging and Mechanisms of Disease 7 8. (https://doi.org/10.1038/s41514-021-00058-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirillova A, Smitz JEJ, Sukhikh GT & Mazunin I 2021 The role of mitochondria in oocyte maturation. Cells 10. (https://doi.org/10.3390/cells10092484)

  • Kushnir VA, Barad DH, Albertini DF, Darmon SK & Gleicher N 2017 Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reproductive Biology and Endocrinology 15 6. (https://doi.org/10.1186/s12958-016-0225-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lautrup S, Sinclair DA, Mattson MP & Fang EF 2019 NAD(+) in brain aging and neurodegenerative disorders. Cell Metabolism 30 630655. (https://doi.org/10.1016/j.cmet.2019.09.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee SE, Kim EY, Choi HY, Moon JJ, Park MJ, Lee JB, Jeong CJ & Park SP 2014 Rapamycin rescues the poor developmental capacity of aged porcine oocytes. Asian-Australasian Journal of Animal Sciences 27 635647. (https://doi.org/10.5713/ajas.2013.13816)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu D, Pitta M, Jiang H, Lee JH, Zhang G, Chen X, Kawamoto EM & Mattson MP 2013 Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiology of Aging 34 15641580. (https://doi.org/10.1016/j.neurobiolaging.2012.11.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu S, Li Y, Gao X, Yan JH & Chen ZJ 2010 Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertility and Sterility 93 15501555. (https://doi.org/10.1016/j.fertnstert.2009.03.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lord T, Nixon B, Jones KT & Aitken RJ 2013 Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biology of Reproduction 88 67. (https://doi.org/10.1095/biolreprod.112.106450)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • May-Panloup P, Boucret L, de la Barca JMC, Desquiret-Dumas V, Ferre-L'Hotellier V, Moriniere C, Descamps P, Procaccio V & Reynier P 2016 Ovarian ageing: the role of mitochondria in oocytes and follicles. Human Reproduction Update 22 725743. (https://doi.org/10.1093/humupd/dmw028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miao Y, Cui Z, Gao Q, Rui R & Xiong B 2020 Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Reports 32 107987. (https://doi.org/10.1016/j.celrep.2020.107987)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mihalas BP, Redgrove KA, McLaughlin EA & Nixon B 2017 Molecular mechanisms responsible for increased vulnerability of the ageing oocyte to oxidative damage. Oxidative Medicine and Cellular Longevity 2017 4015874. (https://doi.org/10.1155/2017/4015874)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mogessie B 2020 Advances and surprises in a decade of oocyte meiosis research. Essays in Biochemistry 64 263275. (https://doi.org/10.1042/EBC20190068)

  • Mogessie B, Scheffler K & Schuh M 2018 Assembly and positioning of the oocyte meiotic spindle. Annual Review of Cell and Developmental Biology 34 381403. (https://doi.org/10.1146/annurev-cellbio-100616-060553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peoples JN, Saraf A, Ghazal N, Pham TT & Kwong JQ 2019 Mitochondrial dysfunction and oxidative stress in heart disease. Experimental and Molecular Medicine 51 113. (https://doi.org/10.1038/s12276-019-0355-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ponnalagu D & Singh H 2017 Anion channels of mitochondria. Handbook of Experimental Pharmacology 240 71101. (https://doi.org/10.1007/164_2016_39)

  • Rajman L, Chwalek K & Sinclair DA 2018 Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metabolism 27 529547. (https://doi.org/10.1016/j.cmet.2018.02.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva AAA, Silva MNP, Figueiredo LBF, Goncalves JD, Silva MJS, Loiola MLG, Bastos BDM, Oliveira RA, Ribeiro LGM & Barberino RS et al.2018 Quercetin influences in vitro maturation, apoptosis and metabolically active mitochondria of goat oocytes. Zygote 26 465470. (https://doi.org/10.1017/S0967199418000485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun QY, Miao YL & Schatten H 2009 Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle 8 27412747. (https://doi.org/10.4161/cc.8.17.9471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun YL, Tang SB, Shen W, Yin S & Sun QY 2019 Roles of resveratrol in improving the quality of postovulatory aging oocytes in vitro. Cells 8. (https://doi.org/10.3390/cells8101132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi Y, Hashimoto S, Yamochi T, Goto H, Yamanaka M, Amo A, Matsumoto H, Inoue M, Ito K & Nakaoka Y et al.2016 Dynamic changes in mitochondrial distribution in human oocytes during meiotic maturation. Journal of Assisted Reproduction and Genetics 33 929938. (https://doi.org/10.1007/s10815-016-0716-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Frohlich T, Arnold GJ, Grummer R, Horsthemke B & Eichenlaub-Ritter U 2016 Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Human Reproduction 31 133149. (https://doi.org/10.1093/humrep/dev279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Blerkom J & Davis P 2007 Mitochondrial signaling and fertilization. Molecular Human Reproduction 13 759770. (https://doi.org/10.1093/molehr/gam068)

  • Wang Y, Li L, Fan LH, Jing Y, Li J, Ouyang YC, Wang ZB, Hou Y & Sun QY 2019 N-acetyl-L-cysteine (NAC) delays post-ovulatory oocyte aging in mouse. Aging (Albany NY) 11 20202030. (https://doi.org/10.18632/aging.101898)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu X, Hu F, Zeng J, Han L, Qiu D, Wang H, Ge J, Ying X & Wang Q 2019 NMNAT2-mediated NAD(+) generation is essential for quality control of aged oocytes. Aging Cell 18 e12955. (https://doi.org/10.1111/acel.12955)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yaku K, Okabe K & Nakagawa T 2018 NAD metabolism: implications in aging and longevity. Ageing Research Reviews 47 117. (https://doi.org/10.1016/j.arr.2018.05.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Q, Cong L, Wang Y, Luo X, Li H, Wang H, Zhu J, Dai S, Jin H & Yao G et al.2020 Increasing ovarian NAD(+) levels improve mitochondrial functions and reverse ovarian aging. Free Radical Biology and Medicine 156 110. (https://doi.org/10.1016/j.freeradbiomed.2020.05.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J & Lu Y et al.2021 Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 11 18451863. (https://doi.org/10.7150/thno.50905)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou J, Xue Z, He HN, Liu X, Yin SY, Wu DY, Zhang X, Schatten H & Miao YL 2019 Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy. Aging (Albany NY) 11 1150411519. (https://doi.org/10.18632/aging.102551)

    • PubMed
    • Search Google Scholar
    • Export Citation