*(X Li and L Chen contributed equally to this work)
Glucagon-like peptide-1 stimulates stem Leydig cell development. Glucagon-like peptide-1 stimulates stem Leydig cell differentiation without affecting its proliferation.
The regulators of stem Leydig cell (SLC) development remain largely unknown. The effect of glucagon-like peptide-1 (GLP-1) on rat SLC proliferation and differentiation was investigated using a 3D tissue culture system and an ethane dimethane sulfonate (EDS)-treated in vivo LC regeneration model. RNA-seq analysis was performed to analyze pathways in which GLP-1 may be involved. GLP-1 (3 and 30 nmol/L) significantly increased medium testosterone abundances and upregulated the expression of Scarb1, Cyp11a1, and Hsd11b1. GLP-1 in vitro did not affect SLC proliferation by 5-Ethynyl-2’- deoxyuridine (EdU) incorporation assay. Intratesticular injection of GLP-1 (10 and 100 ng/testis) into the LC-depleted testis from day 14 to day 28 post-EDS significantly increased serum testosterone abundances and upregulated the expression of Cyp11a1, Hsd3b1, and Hsd11b1. It did not affect the number of HSD11B1+ and CYP11A1+ LCs. RNA-seq analysis revealed that GLP-1 upregulated several pathways, including cAMP-PKA-EPAC1 and MEK/ERK1/2. GLP-1 stimulates SLC differentiation without affecting its proliferation, showing its novel action and mechanism on rat SLC development.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 78 | 78 | 1 |
PDF Downloads | 76 | 76 | 2 |