Suprachiasmatic nucleus and vagus nerve trigger preovulatory LH and ovulation

in Reproduction
Authors:
Elizabeth VieyraBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México
Biology of Reproduction Research Unit, Chronobiology of Reproduction Research Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Elizabeth Vieyra in
Current site
Google Scholar
PubMed
Close
,
Julio C GarcíaBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Julio C García in
Current site
Google Scholar
PubMed
Close
,
Hugo A ZarcoBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Hugo A Zarco in
Current site
Google Scholar
PubMed
Close
,
Rosa LinaresBiology of Reproduction Research Unit, Laboratorio de Endocrinología, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Rosa Linares in
Current site
Google Scholar
PubMed
Close
,
Gabriela RosasBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Gabriela Rosas in
Current site
Google Scholar
PubMed
Close
,
Deyra A RamírezFacultad de Estudios Superiores Zaragoza Campus III, UNAM, San Miguel Contla, Tlaxcala, México

Search for other papers by Deyra A Ramírez in
Current site
Google Scholar
PubMed
Close
,
Andrea ChaparroBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Andrea Chaparro in
Current site
Google Scholar
PubMed
Close
,
Julieta A EspinozaBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Julieta A Espinoza in
Current site
Google Scholar
PubMed
Close
,
Roberto DomínguezBiology of Reproduction Research Unit, Chronobiology of Reproduction Research Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Roberto Domínguez in
Current site
Google Scholar
PubMed
Close
, and
Leticia Morales-LedesmaBiology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México

Search for other papers by Leticia Morales-Ledesma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5276-8260
View More View Less

Correspondence should be addressed to L Morales-Ledesma; Email: leticiamorales@comunidad.unam.mx or
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

In the proestrus day, the neural and endocrine signals modulate ovarian function. This study shows vagus nerve plays a role in the multisynaptic pathways of communication between the suprachiasmatic nucleus and the ovaries where such neural information determines ovulation.

Abstract

The suprachiasmatic nucleus (SCN) regulates the activity of several peripheral organs through a parasympathetic–sympathetic pathway. Previously, we demonstrated that atropine (ATR) microinjection in the right SCN of rats during proestrus blocks ovulation. In the present study, we analysed whether the vagus nerve is one of the neural pathways by which the SCN regulates ovulation. For this, CIIZ-V strain cyclic rats on the day of proestrus were microinjected with a saline solution (vehicle) or ATR in the right or left SCN, which was followed by ventral laparotomy or ipsilateral vagotomy to the microinjection side. Some animal groups were sacrificed (i) on the same day of the surgery to measure oestradiol, progesterone and luteinizing hormone (LH) levels or (ii) at 24 h after surgery to evaluate ovulation. The left vagotomy in rats microinjected with ATR in the left SCN did not modify ovulation. In rats with ATR microinjection in the right SCN, the right vagotomy increased the levels of steroids and LH on the proestrus and ovulatory response. The present results suggest that the right vagus nerve plays a role in the multisynaptic pathways of communication between the SCN and the ovaries and indicate that such neural information participates in the regulation of the oestradiol and progesterone surge, which triggers the preovulatory peak of LH and determines ovulation.

 

  • Collapse
  • Expand
  • Aberdeen J, Corr L, Milner P, Lincoln J & Burnstock G 1990 Marked increases in calcitonin gene-related peptide containing nerves in the developing rat following long-term sympathectomy with guanethidine. Neuroscience 35 175184. (https://doi.org/10.1016/0306-4522(9090132-n)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H & Uenoyama Y et al.2007 Involvement of anteroventral periventricular metastin/ kisspeptin neurons in the estrogen positive feedback action on luteinizing hormone release in female rats. Journal of Reproduction and Development 53 367378. (https://doi.org/10.1262/jrd.18146)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arai Y, Ishii H, Kobayashi M & Ozawa H 2017 Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells. Journal of Physiological Sciences 67 313323. (https://doi.org/10.1007/s12576-016-0464-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbacka-Surowiak G, Surowiak J & Stokłosowa S 2003 The involvement of suprachiasmatic nuclei in the regulation of estrous cycles in rodents. Reproductive Biology 3 99129.

    • Search Google Scholar
    • Export Citation
  • Berthoud HR & Powley TL 1996 Interaction between Parasympathetic and Symphatetic Nerves in prevertebral Ganglia Morphological evidence for vagal efferent Innervation of Ganglion Cells in the Rat. Microscopy Research and Technique 35 8086. (https://doi.org/10.1002/(SICI)1097-0029(19960901)35:1<80::AID-JEMT7>3.0.CO;2-W)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bina KG, Rusak B & Semba K 1993 Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. Journal of Comparative Neurology 335 295307. (https://doi.org/10.1002/cne.903350212)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolden DA, Sternini C & Kruger L 1997 GAP-43 mRNA and calcitonin gene-related peptide mRNA expression in sensory neurons are increased following sympathectomy. Brain Research Bulletin 42 3950. (https://doi.org/10.1016/S0361-9230(9600108-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijs FN, Cazarez F, Basualdo MC, Scheer FAJL, Perusquía M, Centurion D & Buijs RM 2014 The suprachiasmatic nucleus is part of a neural feedback circuit adapting blood pressure response. Neuroscience 266 197207. (https://doi.org/10.1016/j.neuroscience.2014.02.018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burden HW, Lawrence IE, Louis TM & Hodson CA 1981 Effects of abdominal vagotomy on the estrous cycle of the rat and the induction of pseudopregnancy. Neuroendocrinology 33 218222. (https://doi.org/10.1159/000123232)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burden HW, Leonard M, Smith CP, LawrenceJrIE 1983 The sensory innervations of the ovary: a horseradish peroxidase study in the rat. Anatomical Record 207 623627. (https://doi.org/10.1002/ar.1092070410)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burden HW, Leonard MJ, Hodson CA, Louis TM & Lawrence Jr IE 1986 Effect of abdominal vagotomy at proestrus on ovarian weight, ovarian antral follicles, and serum levels of gonadotropins, estradiol, and testosterone in the rat. Neuroendocrinology 42 449455. (https://doi.org/10.1159/000124486)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagampang FR, Maeda K & Ota K 1992 Involvement of the gastric vagal nerve in the suppression of pulsatile luteinizing hormone release during acute fasting in rats. Endocrinology 130 30033006. (https://doi.org/10.1210/endo.130.5.1572309)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chávez R, Sánchez S, Ulloa-Aguirre A & Domínguez R 1989 Effects on oestrus cyclicity and ovulation of unilateral section on the vagus nerve performed on different days of the oestrus cycle in the rat. Journal of Endocrinology 123 441444. (https://doi.org/10.1677/joe.0.1230441)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins JJ, Lin CE, Berthoud HR & Papka RE 1999 Vagal afferents from the uterus and cervix provide direct connections to the brainstem. Cell and Tissue Research 295 4354. (https://doi.org/10.1007/s004410051211)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cora MC, Kooestra L & Travlos G 2015 Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicologic Pathology 43 776793. (https://doi.org/10.1177/0192623315570339)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz ME, Chávez R & Domínguez R 1986 Ovulation, follicular growth and ovarian reactivity to exogenous gonadotropins in adult rats with unilateral or bilateral section of the vagi nerves. Revista de Investigacion Clinica; Organo Del Hospital de Enfermedades de la Nutricion 38 167171.

    • Search Google Scholar
    • Export Citation
  • Ding J, Wang L, Wang CH, Gao C, Wang F & Sun T 2021 Is vagal-nerve stimulation safe during pregnancy? A mini review. Epilepsy Research 174 106671. (https://doi.org/10.1016/j.eplepsyres.2021.106671)

    • Search Google Scholar
    • Export Citation
  • Domínguez-González A, Damian-Matsumura P, Timossi C, Cruz ME & Domínguez R 1998 Characterization of monoamine neural activity in the preoptic anterior hypothalamic area and medial basal hypothalamus in rats during the day of pro-oestrus and its relation to gonadotrophin and sexual steroid hormone plasma levels. Medical Science Research 26 275278.

    • Search Google Scholar
    • Export Citation
  • Estacio MA, Tsukamura H, Yamada S, Tsukahara S, Hirunagi K & Maeda K 1996 Vagus nerve mediates the increase in estrogen receptors in the hypothalamic paraventricular nucleus and nucleus of the solitary tract during fasting in ovariectomized rats. Neuroscience Letters 208 2528. (https://doi.org/10.1016/0304-3940(9612534-9)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funabashi T, Aiba S, Sano A, Shinohara K & Kimura F 1999 Intracerebroventricular injection of arginine-vasopressin V1 receptor antagonist attenuates the surge of luteinizing hormone and prolactin secretion in proestrous rats. Neuroscience Letters 260 3740. (https://doi.org/10.1016/s0304-3940(9800940-9)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garg D & Berga S 2020 Chapter 1 Neuroendocrine mechanisms of reproduction. Handbook of Clinical Neurology 171 323. (https://doi.org/10.1016/B978-0-444-64239-4.00001-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerendai I, Kocsis K & Halasz B 2002 Supraspinal connections of the ovary: structural and functional aspects. Microscopy Research and Technique 59 474483. (https://doi.org/10.1002/jemt.10225)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerendai I, Tóth IE, Boldogkö Z, Medveczky I & Halász B 2000 CNS structures presumably involved in vagal control of ovarian function. Journal of the Autonomic Nervous System 80 4045. (https://doi.org/10.1016/s0165-1838(0000071-0)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerendai I, Tóth IE, Boldogköi Z & Halász B 2009 Recent findings on the organization of central nervous system structures involved in the innervation of endocrine glands and other organs; observations obtained by the transneuronal viral double-labeling technique. Endocrine 36 179188. (https://doi.org/10.1007/s12020-009-9189-8)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerendai I, Toth IE, Boldogkoi Z, Medveczky I & Halasz B 1998 Neuronal labeling in the rat brain and spinal cord from the ovary using viral transneuronal tracing technique. Neuroendocrinology 68 244256. (https://doi.org/10.1159/000054372)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodchild CS, Serrao JM, Kolosov A & Boyd BJ 2015 Alphaxalone reformulated: A water-soluble intravenous anesthetic preparation in Sulfobutyl-ether-β cyclodextrin. Anesthesia and Analgesia 120 10251031. (https://doi.org/10.1213/ANE.0000000000000559)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastings MH, Maywood ES & Brancaccio M 2018 Generation of circadian rhythms in the suprachiasmatic nucleus. Nature Reviews. Neuroscience 19 453469. (https://doi.org/10.1038/s41583-018-0026-z)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hut RA & van der Zee EA 2011 The cholinergic system, circadian rhythmicity, and time memory. Behavioural Brain Research 221 466480. (https://doi.org/10.1016/j.bbr.2010.11.039)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennaway DJ 2005 The role of circadian rhythmicity in reproduction. Human Reproduction Update 11 91101. (https://doi.org/10.1093/humupd/dmh054)

  • Kristensen B, Georg B & Fahrenkrug J 1997 Cholinergic regulation of VIP gene expression in human neuroblastoma cells. Brain Research 775 99106. (https://doi.org/10.1016/s0006-8993(9700966-9)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krsmanovic LZ, Mores N, Navarro CE, Abdul SA, Arora KK & Catt KJ 1998 Muscarinic regulation of intracellular signaling and neurosecretion in gonadotropin-releasing hormone neurons. Endocrinology 139 40374043. (https://doi.org/10.1210/endo.139.10.6267)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence IE, Burden HW & Louis TM 1978 Effect of abdominal vagotomy of the pregnant rat on LH and progesterone concentration and fetal resorption. Journal of Reproduction and Fertility 33 131136. (https://doi.org/10.1530/jrf.0.0530131)

    • Search Google Scholar
    • Export Citation
  • Linares R, Rosas G, Vieyra E, Ramírez DA, Velázquez DR, Espinoza JA, Morán C, Domínguez R & Morales-Ledesma L 2019 In adult rats with polycystic ovarian syndrome, unilateral or bilateral vagotomy modifies the noradrenergic concentration in the ovaries and the celiac superior mesenteric ganglia in different ways. Frontiers in Physiology 10 1309. (https://doi.org/10.3389/fphys.2019.01309)

    • Search Google Scholar
    • Export Citation
  • Lundberg JM, Anggard A, Fahrenkrug J, Hokfelt T & Mutt V 1980 Vasoactive intestinal polypeptide in the cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proceedings of the National Academy of Sciences of the United States of America 77 16511655. (https://doi.org/10.1073/pnas.77.3.1651)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madeira MD, Pereira PA, Silva SM, Cadete-Leite A & Paula-Barbosa MM 2004 Basal forebrain neurons modulate the synthesis and expression of neuropeptides in the rat suprachiasmatic nucleus. Neuroscience 125 889901. (https://doi.org/10.1016/j.neuroscience.2004.03.005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchenthaler I, Lane MV, Numan S & Dellovade TL 2004 Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocutochemical analyses. Journal of Comparative Neurology 473 270291. (https://doi.org/10.1002/cne.20128)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middlebrook I & Schoener B 2022 Anabolic steroid toxicity [Updated 2021 Nov 19]. In StatPearls [Internet]. Treasure Island , FL: StatPearls.

  • Miller BH & Takahashi JS 2013 2014 Central circadian control of female reproductive function. Frontiers in Endocrinology 4 195. (https://doi.org/10.3389/fendo.2013.00195)

    • Search Google Scholar
    • Export Citation
  • Morales A, Diaz M, Ropero AB, Nadal A & Alonso R 2003 Estradiol modulates acetylcholine-induced Ca2+ signals in LHRH-releasing GT1-7 cells through a membrane binding site. European Journal of Neuroscience 18 25052514. (https://doi.org/10.1046/j.1460-9568.2003.02997.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales L, Ricardo B, Bolaños A, Chavira R & Domínguez R 2007 Ipsilateral vagotomy to unilaterally ovariectomized pre-pubertal rats modifies compensatory ovarian responses. Reproductive Biology and Endocrinology: RB&E 5 24. (https://doi.org/10.1186/1477-7827-5-24)

    • Search Google Scholar
    • Export Citation
  • Morales-Ledesma L, Betanzos-García R & Domínguez-Casalá R 2004 Unilateral or bilateral vagotomy performed on prepubertal rats at puberty onset of female rat deregulates ovarian function. Archives of Medical Research 35 279283. (https://doi.org/10.1016/j.arcmed.2004.03.007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O´Hara BF, Edgar DM, Cao VH, Wiler SW, Heller HC, Kilduff TS & Miller JD 1998 Nicotine and nicotinic receptors in the circadian system. Psychoneuroendocrinology 23 161173. (https://doi.org/10.1016/S0306-4530(9700077-2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paxinos G & Watson C 2004 The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Editors. Amsterdam: London.

  • Ramírez DA, Vieyra E, González AI, Morán C, Domínguez R & Morales-Ledesma L 2017 Both the suprachiasmatic nucleus and the superior ovarian nerve contribute to the processes of ovulation and steroid hormone secretion on proestrus. Reproductive Sciences 24 844855. (https://doi.org/10.1177/1933719116670307)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricardo JA & Koh ET 1978 Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Research 153 126. (https://doi.org/10.1016/0006-8993(7891125-3)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruffoli R, Giorgi FS, Pizzanelli CH, Murri L, Paparelli A & Fornai F 2011 The chemical neuroanatomy of vagus nerve stimulation. Journal of Chemical Neuroanatomy 42 288296. (https://doi.org/10.1016/j.jchemneu.2010.12.002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schicho R, Kanai Y, Ishikawa T, Skofitsch G & Donnerer J 1998 Involvement of NGF in the induction of increased noradrenergic innervation of the ureter in neonatally capsaicin-treated rats. Journal of the Autonomic Nervous System 73 4653. (https://doi.org/10.1016/s0165-1838(9800125-8)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellix MT 2015 Circadian clock function in the mammalian ovary. Journal of Biological Rhythms 30 719. (https://doi.org/10.1177/0748730414554222)

  • Smarr BL, Gile JJ & de la Iglesia HO 2013 Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in the female rats: possible role as an integrator for circadian and ovarian signals timing the luteinizing hormone surge. Journal of Neuroendocrinology 25 12731279. (https://doi.org/10.1111/jne.12104)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith JT, Clifton DK & Steiner RA 2006 Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction 131 623630. (https://doi.org/10.1530/rep.1.00368)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun Y, Shu J, Kyei K & Neal-Perry GS 2012 Intracerebroventricular infusion of vasoactive intestinal peptide rescues the luteinizing hormone surge in middle-aged female rats. Frontiers in Endocrinology 3 24. (https://doi.org/10.3389/fendo.2012.00024)

    • Search Google Scholar
    • Export Citation
  • Turi GF, Liposits Z & Hrabovszky E 2008 Cholinergic afferents to gonadotropin-releasing hormone neurons of the rat. Neurochemistry International 52 723728. (https://doi.org/10.1016/j.neuint.2007.09.001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urra J, Blohbereger J, Tiszavari M, Mayerhofer A & Lara HE 2016 In vivo blockade of acetylcholinesterase increases intraovarian acetylcholine and enhances follicular development and fertility in the rat. Scientific Reports 6 30129. (https://doi.org/10.1038/srep30129)

    • Search Google Scholar
    • Export Citation
  • van der Beek EM, Horvath TL, Wiegant VM, Van Den Hurk R & Buijs RM 1997 Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. Journal of Comparative Neurology 384 569579. (https://doi.org/10.1002/(sici)1096-9861(19970811)384:4<569::aid-cne6>3.0.co;2-0)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Beek EM, Swarts HM & Wiegant VM 1999 Central administration of antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin surges in ovariectomized, estrogen-treated rats. Neuroendocrinology 69 227237. (https://doi.org/10.1159/000054423)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Ranst L & Lauweryns JM 1990 Effects of long-term sensory vs. sympathetic denervation on the distribution of calcitonin gene-related peptide and tyrosine hydroxylase immunoreactivities in the rat lung. Journal of Neuroimmunology 29 131138. (https://doi.org/10.1016/0165-5728(9090155-g)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieyra E, Ramírez DA, Lagunas N, Cárdenas M, Chavira R, Damián-Matsumura P, Trujillo A, Domínguez R & Morales-Ledesma L 2016 Unilaterally blocking the muscarinic receptors in the suprachiasmatic nucleus in proestrus rats prevents pre-ovulatory LH secretion and ovulation. Reproductive Biology and Endocrinology: RB&E 14 34. (https://doi.org/10.1186/s12958-016-0168-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieyra E, Ramírez DA, Linares R, Rosas G, Domínguez R & Morales-Ledesma L 2019 Stimulation of nicotinic receptors in the suprachiasmatic nucleus results in a higher number of growing follicles and ova shed. Experimental Physiology 104 11791189. (https://doi.org/10.1113/EP087538)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams WP III, Jarjisian SG, Mikkelsen JD & Kriegsfeld LJ 2011 Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 152 595606. (https://doi.org/10.1210/en.2010-0943)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang JJ, Wang YT, Cheng PC, Kuo YJ & Huang RC 2010 Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. Journal of Neurophysiology 103 13971409. (https://doi.org/10.1152/jn.00877.2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan H & Silberstein SD 2016 Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 56 7178. (https://doi.org/10.1111/head.12647)

    • Crossref
    • Search Google Scholar
    • Export Citation