A refined culture system of oocytes from early antral follicles promotes oocyte maturation and embryo development in cattle

in Reproduction
Authors:
Rodrigo Garcia BarrosReproductive and Developmental Biology Laboratory (Redbiolab), Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy

Search for other papers by Rodrigo Garcia Barros in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1727-2155
,
Valentina LoddeReproductive and Developmental Biology Laboratory (Redbiolab), Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy

Search for other papers by Valentina Lodde in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9768-2292
,
Federica FranciosiReproductive and Developmental Biology Laboratory (Redbiolab), Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy

Search for other papers by Federica Franciosi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8742-0291
, and
Alberto Maria LucianoReproductive and Developmental Biology Laboratory (Redbiolab), Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy

Search for other papers by Alberto Maria Luciano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8016-9919
View More View Less

Correspondence should be addressed to A M Luciano; Email: alberto.luciano@unimi.it
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

The proposed culture system improves the current state of in vitro culture of growing oocytes in the bovine species and allows access to the untapped gamete reserve, thus improving reproductive efficiency.

Abstract

The present study aimed to improve the in vitro culture of bovine oocytes collected from early antral follicles (EAFs) to support the progressive acquisition of meiotic and developmental competence. The rationale that drove the development of such a culture system was to maintain as much as possible the physiological conditions that support the oocyte growth and differentiation in vivo. To this extent, oocytes were cultured for 5 days, which parallels the transition from early to medium antral follicles (MAFs) in the bovine, and supports promoting a 3D-like structure were provided. Additionally, the main hormones (follicle-stimulating hormone, estradiol, progesterone, and testosterone) were added in concentrations similar to the ones previously observed in bovine EAFs. The meiotic arrest was imposed using cilostamide. The cultured cumulus–oocyte complexes (COCs) reached a mean diameter of 113.4 ± 0.75 µm and showed a progressive condensation of the chromatin enclosed in the germinal vesicle (GV), together with a gradual decrease in the global transcriptional activity, measured by 5-ethynyl uridine incorporation. The described morpho-functional changes were accompanied by an increased ability to mature and develop to the blastocyst stage in vitro, although not matching the rates obtained by MAF-retrieved oocytes. The described system improves the current state of in vitro culture of growing oocytes in the bovine species, and it can be used to increase the number of gametes usable for in vitro embryo production in animals of high genetic merit or with specific desirable traits.

Supplementary Materials

 

  • Collapse
  • Expand
  • Alam MH, Lee J & Miyano T 2018 Inhibition of PDE3A sustains meiotic arrest and gap junction of bovine growing oocytes in in vitro growth culture. Theriogenology 118 110118. (https://doi.org/10.1016/j.theriogenology.2018.05.028)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albertini DF, Combelles CM, Benecchi E & Carabatsos MJ 2001 Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121 647653. (https://doi.org/10.1530/rep.0.1210647)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alm H, Katska-Ksiazkiewicz L, Rynska B & Tuchscherer A 2006 Survival and meiotic competence of bovine oocytes originating from early antral ovarian follicles. Theriogenology 65 14221434. (https://doi.org/10.1016/j.theriogenology.2005.08.014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Araujo VR, Gastal MO, Figueiredo JR & Gastal EL 2014 In vitro culture of bovine preantral follicles: a review. Reproductive Biology and Endocrinology: RB&E 12 78. (https://doi.org/10.1186/1477-7827-12-78)

    • Search Google Scholar
    • Export Citation
  • Bachvarova R 1985 Gene expression during oogenesis and oocyte development in mammals. Developmental Biology 1 453524. (https://doi.org/10.1007/978-1-4615-6814-8_11)

    • Search Google Scholar
    • Export Citation
  • Barros RG, Lima PF, Soares ACS, Sanches L, Price CA & Buratini J 2019 Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte. Journal of Assisted Reproduction and Genetics 36 905913. (https://doi.org/10.1007/s10815-019-01436-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros RG, Lodde V, Franciosi F & Luciano AM 2020 In vitro culture strategy for oocytes from early antral follicle in cattle. Journal of Visualized Experiments: JoVE 161 e61625. (https://doi.org/10.3791/61625)

    • Search Google Scholar
    • Export Citation
  • Beg MA, Bergfelt DR, Kot K & Ginther OJ 2002 Follicle selection in cattle: dynamics of follicular fluid factors during development of follicle dominance. Biology of Reproduction 66 120126. (https://doi.org/10.1095/biolreprod66.1.120)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cain L, Chatterjee S & Collins TJ 1995 In vitro folliculogenesis of rat preantral follicles. Endocrinology 136 33693377. (https://doi.org/10.1210/endo.136.8.7628372)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortvrindt RG, Hu Y, Liu J & Smitz JE 1998 Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertility and Sterility 70 11141125. (https://doi.org/10.1016/s0015-0282(9800332-x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De La Fuente R & Eppig JJ 2001 Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Developmental Biology 229 224236. (https://doi.org/10.1006/dbio.2000.9947)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieci C, Lodde V, Franciosi F, Lagutina I, Tessaro I, Modina SC, Albertini DF, Lazzari G, Galli C & Luciano AM 2013 The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer. Biology of Reproduction 89 68. (https://doi.org/10.1095/biolreprod.113.110577)

    • Search Google Scholar
    • Export Citation
  • Dieci C, Lodde V, Labreque R, Dufort I, Tessaro I, Sirard MA & Luciano AM 2016 Differences in cumulus cell gene expression indicate the benefit of a pre-maturation step to improve in-vitro bovine embryo production. Molecular Human Reproduction 22 882897. (https://doi.org/10.1093/molehr/gaw055)

    • Search Google Scholar
    • Export Citation
  • Dieleman SJ, Bevers MM, Poortman J & van Tol HT 1983 Steroid and pituitary hormone concentrations in the fluid of preovulatory bovine follicles relative to the peak of LH in the peripheral blood. Journal of Reproduction and Fertility 69 641649. (https://doi.org/10.1530/jrf.0.0690641)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo M, Kawahara-Miki R, Cao F, Kimura K, Kuwayama T, Monji Y & Iwata H 2013 Estradiol supports in vitro development of bovine early antral follicles. Reproduction 145 8596. (https://doi.org/10.1530/REP-12-0319)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eppig JJ 2001 Oocyte control of ovarian follicular development and function in mammals. Reproduction 122 829838. (https://doi.org/10.1530/rep.0.1220829)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eppig JJ, O’Brien M & Wigglesworth K 1996 Mammalian oocyte growth and development in vitro. Molecular Reproduction and Development 44 260273. (https://doi.org/10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eppig JJ & O’Brien MJ 1996 Development in vitro of mouse oocytes from primordial follicles. Biology of Reproduction 54 197207. (https://doi.org/10.1095/biolreprod54.1.197)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson BH 1966 Development and senescence of the postnatal bovine ovary. Journal of Animal Science 25 800805. (https://doi.org/10.2527/jas1966.253800x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fair T 2003 Follicular oocyte growth and acquisition of developmental competence. Animal Reproduction Science 78 203216. (https://doi.org/10.1016/s0378-4320(0300091-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fair T, Hyttel P & Greve T 1995 Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Molecular Reproduction and Development 42 437442. (https://doi.org/10.1002/mrd.1080420410)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina SC, Fadini R, Dal Canto M, Renzini MM, Albertini DF & Luciano AM 2014 Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biology of Reproduction 91 61. (https://doi.org/10.1095/biolreprod.114.118869)

    • Search Google Scholar
    • Export Citation
  • Franciosi F, Perazzoli F, Lodde V, Modina SC & Luciano AM 2010 Developmental competence of gametes reconstructed by germinal vesicle transplantation from fresh and cryopreserved bovine oocytes. Fertility and Sterility 93 229238. (https://doi.org/10.1016/j.fertnstert.2008.09.078)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galli C 2017 Achievements and unmet promises of assisted reproduction technologies in large animals: a personal perspective. Animal Reproduction 14 614621. (https://doi.org/10.21451/1984-3143-AR1005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gioia L, Barboni B, Turriani M, Capacchietti G, Pistilli MG, Berardinelli P & Mattioli M 2005 The capability of reprogramming the male chromatin after fertilization is dependent on the quality of oocyte maturation. Reproduction 130 2939. (https://doi.org/10.1530/rep.1.00550)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gore-Langton RE & Daniel SA 1990 Follicle-stimulating hormone and estradiol regulate antrum-like reorganization of granulosa cells in rat preantral follicle cultures. Biology of Reproduction 43 6572. (https://doi.org/10.1095/biolreprod43.1.65)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada M, Miyano T, Matsumura K, Osaki S, Miyake M & Kato S 1997 Bovine oocytes from early antral follicles grow to meiotic competence in vitro: effect of FSH and hypoxanthine. Theriogenology 48 743755. (https://doi.org/10.1016/s0093-691x(9700298-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson KM, McNeilly AS & Swanston IA 1982 Gonadotrophin and steroid concentrations in bovine follicular fluid and their relationship to follicle size. Journal of Reproduction and Fertility 65 467473. (https://doi.org/10.1530/jrf.0.0650467)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirao Y, Itoh T, Shimizu M, Iga K, Aoyagi K, Kobayashi M, Kacchi M, Hoshi H & Takenouchi N 2004 In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biology of Reproduction 70 8391. (https://doi.org/10.1095/biolreprod.103.021238)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyttel P, Fair T, Callesen H & Greve T 1997 Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47 2332. (https://doi.org/10.1016/S0093-691X(9600336-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ireland JJ & Roche JF 1983 Growth and differentiation of large antral follicles after spontaneous luteolysis in heifers: changes in concentration of hormones in follicular fluid and specific binding of gonadotropins to follicles. Journal of Animal Science 57 157167. (https://doi.org/10.2527/jas1983.571157x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobsen AS, Thomsen PD & Avery B 2006 Few polyploid blastomeres in morphologically superior bovine embryos produced in vitro. Theriogenology 65 870881. (https://doi.org/10.1016/j.theriogenology.2005.06.014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaneko H, Terada T, Taya K, Watanabe G, Sasamoto S, Hasegawa Y & Igarashi M 1991 Ovarian follicular dynamics and concentrations of oestradiol-17 beta, progesterone, luteinizing hormone and follicle stimulating hormone during the periovulatory phase of the oestrous cycle in the cow. Reproduction, Fertility, and Development 3 529535. (https://doi.org/10.1071/rd9910529)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruip TA & Dieleman SJ 1985 Steroid hormone concentrations in the fluid of bovine follicles relative to size, quality and stage of the oestrus cycle. Theriogenology 24 395408. (https://doi.org/10.1016/0093-691x(8590046-9)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labrecque R, Lodde V, Dieci C, Tessaro I, Luciano AM & Sirard MA 2015 Chromatin remodelling and histone mRNA accumulation in bovine germinal vesicle oocytes. Molecular Reproduction and Development 82 450462. (https://doi.org/10.1002/mrd.22494)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodde V, Garcia Barros R, Dall’Acqua PC, Dieci C, Robert C, Bastien A, Sirard MA, Franciosi F & Luciano AM 2020 Zinc supports transcription and improves meiotic competence of growing bovine oocytes. Reproduction 159 679691. (https://doi.org/10.1530/REP-19-0398)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodde V, Luciano AM, Franciosi F, Labrecque R & Sirard MA 2017 Accumulation of chromatin remodelling enzyme and histone transcripts in bovine oocytes. Results and Problems in Cell Differentiation 63 223255. (https://doi.org/10.1007/978-3-319-60855-6_11)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodde V, Modina S, Galbusera C, Franciosi F & Luciano AM 2007 Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Molecular Reproduction and Development 74 740749. (https://doi.org/10.1002/mrd.20639)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodde V, Modina S, Maddox-Hyttel P, Franciosi F, Lauria A & Luciano AM 2008 Oocyte morphology and transcriptional silencing in relation to chromatin remodeling during the final phases of bovine oocyte growth. Molecular Reproduction and Development 75 915924. (https://doi.org/10.1002/mrd.20824)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodde V, Modina SC, Franciosi F, Zuccari E, Tessaro I & Luciano AM 2009 Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow. European Journal of Histochemistry 53 e24. (https://doi.org/10.4081/ejh.2009.e24)

    • Search Google Scholar
    • Export Citation
  • Lonergan P & Fair T 2008 In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69 1722. (https://doi.org/10.1016/j.theriogenology.2007.09.007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luciano AM, Barros RG, Soares ACS, Buratini J, Lodde V & Franciosi F 2021 Recreating the follicular environment: a customized approach for in vitro culture of bovine oocytes based on the origin and differentiation state. Methods in Molecular Biology 2273 115. (https://doi.org/10.1007/978-1-0716-1246-0_1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luciano AM, Franciosi F, Dieci C & Lodde V 2014 Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Animal Reproduction Science 149 310. (https://doi.org/10.1016/j.anireprosci.2014.06.026)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luciano AM, Franciosi F, Modina SC & Lodde V 2011 Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biology of Reproduction 85 12521259. (https://doi.org/10.1095/biolreprod.111.092858)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luciano AM & Lodde V 2013 Changes of large-scale chromatin configuration during mammalian oocyte differentiation. In Oogenesis. Coticchio G, Albertini DF, De Santis L Eds.: London: Springer, pp. 93108. (https://doi.org/10.1007/978-0-85729-826-3_7)

    • Search Google Scholar
    • Export Citation
  • Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A & Modina S 2005 Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3’,5’-monophosphate, and glutathione. Molecular Reproduction and Development 71 389397. (https://doi.org/10.1002/mrd.20304)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luciano AM, Pappalardo A, Ray C & Peluso JJ 1994 Epidermal growth factor inhibits large granulosa cell apoptosis by stimulating progesterone synthesis and regulating the distribution of intracellular free calcium. Biology of Reproduction 51 646654. (https://doi.org/10.1095/biolreprod51.4.646)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lussier JG, Matton P & Dufour JJ 1987 Growth rates of follicles in the ovary of the cow. Journal of Reproduction and Fertility 81 301307. (https://doi.org/10.1530/jrf.0.0810301)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makita M & Miyano T 2014 Steroid hormones promote bovine oocyte growth and connection with granulosa cells. Theriogenology 82 605612. (https://doi.org/10.1016/j.theriogenology.2014.05.020)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makita M & Miyano T 2015 Androgens promote the acquisition of maturation competence in bovine oocytes. Journal of Reproduction and Development 61 211217. (https://doi.org/10.1262/jrd.2014-161)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin M & Telfer EE 2010 Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139 971978. (https://doi.org/10.1530/REP-10-0025)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Modina S, Borromeo V, Luciano AM, Lodde V, Franciosi F & Secchi C 2007 Relationship between growth hormone concentrations in bovine oocytes and follicular fluid and oocyte developmental competence. European Journal of Histochemistry 51 173180. (https://doi.org/10.4081/1139)

    • Search Google Scholar
    • Export Citation
  • Modina SC, Tessaro I, Lodde V, Franciosi F, Corbani D & Luciano AM 2014 Reductions in the number of mid-sized antral follicles are associated with markers of premature ovarian senescence in dairy cows. Reproduction, Fertility, and Development 26 235244. (https://doi.org/10.1071/RD12295)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monniaux D, Clemente Nd, Touze JL, Belville C, Rico C, Bontoux M, Picard JY & Fabre S 2008 Intrafollicular steroids and anti-Mullerian hormone during normal and cystic ovarian follicular development in the cow. Biology of Reproduction 79 387396. (https://doi.org/10.1095/biolreprod.107.065847)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaguchi K, Yanagawa Y, Yoshioka K, Suda T, Katagiri S & Nagano M 2019 Relationships between the antral follicle count, steroidogenesis, and secretion of follicle-stimulating hormone and anti-Mullerian hormone during follicular growth in cattle. Reproductive Biology and Endocrinology: RB&E 17 88. (https://doi.org/10.1186/s12958-019-0534-3)

    • Search Google Scholar
    • Export Citation
  • Schneider CA, Rasband WS & Eliceiri KW 2012 NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 671675. (https://doi.org/10.1038/nmeth.2089)

  • Silvan G, Illera JC & Illera M 1993 Determination of follicular fluid estradiol levels by enzyme-linked immunosorbent assay. Steroids 58 324329. (https://doi.org/10.1016/0039-128x(9390092-2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva-Santos KC, Santos GM, Siloto LS, Hertel MF, Andrade ER, Rubin MI, Sturion L, Melo-Sterza FA & Seneda MM 2011 Estimate of the population of preantral follicles in the ovaries of Bos taurus indicus and Bos taurus taurus cattle. Theriogenology 76 10511057. (https://doi.org/10.1016/j.theriogenology.2011.05.008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon LE, Kumar TR & Duncan FE 2020 In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables†. Biology of Reproduction 103 455470. (https://doi.org/10.1093/biolre/ioaa073)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smitz J, Cortvrindt R & Van Steirteghem AC 1996 Normal oxygen atmosphere is essential for the solitary long-term culture of early preantral mouse follicles. Molecular Reproduction and Development 45 466475. (https://doi.org/10.1002/(SICI)1098-2795(199612)45:4<466::AID-MRD9>3.0.CO;2-P)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares ACS, Lodde V, Barros RG, Price CA, Luciano AM & Buratini J 2017 Steroid hormones interact with natriuretic peptide C to delay nuclear maturation, to maintain oocyte-cumulus communication and to improve the quality of in vitro-produced embryos in cattle. Reproduction, Fertility, and Development 29 22172224. (https://doi.org/10.1071/RD16320)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taketsuru H, Hirao Y, Takenouchi N, Iga K & Miyano T 2012 Effect of androstenedione on the growth and meiotic competence of bovine oocytes from early antral follicles. Zygote 20 407415. (https://doi.org/10.1017/S0967199411000268)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarahomi M, Vaz FM, van Straalen JP, Schrauwen FAP, van Wely M, Hamer G, Repping S & Mastenbroek S 2019 The composition of human preimplantation embryo culture media and their stability during storage and culture. Human Reproduction 34 14501461. (https://doi.org/10.1093/humrep/dez102)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telfer EE 2019 Future developments: in vitro growth (IVG) of human ovarian follicles. Acta Obstetricia et Gynecologica Scandinavica 98 653658. (https://doi.org/10.1111/aogs.13592)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telfer EE, Sakaguchi K, Clarkson YL & McLaughlin M 2019 In vitro growth of immature bovine follicles and oocytes. Reproduction, Fertility, and Development 32 16. (https://doi.org/10.1071/RD19270)

    • Search Google Scholar
    • Export Citation
  • Tervit HR, Whittingham DG & Rowson LE 1972 Successful culture in vitro of sheep and cattle ova. Journal of Reproduction and Fertility 30 493497. (https://doi.org/10.1530/jrf.0.0300493)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderhyden BC, Caron PJ, Buccione R & Eppig JJ 1990 Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Developmental Biology 140 307317. (https://doi.org/10.1016/0012-1606(9090081-s)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters KA, Allan CM & Handelsman DJ 2008 Androgen actions and the ovary. Biology of Reproduction 78 380389. (https://doi.org/10.1095/biolreprod.107.064089)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigglesworth K, Lee KB, O’Brien MJ, Peng J, Matzuk MM & Eppig JJ 2013 Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proceedings of the National Academy of Sciences of the United States of America 110 E3723E3729. (https://doi.org/10.1073/pnas.1314829110)

    • Search Google Scholar
    • Export Citation
  • Yamamoto K, Otoi T, Koyama N, Horikita N, Tachikawa S & Miyano T 1999 Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology 52 8189. (https://doi.org/10.1016/s0093-691x(9900111-9)

    • Crossref
    • Search Google Scholar
    • Export Citation