Maternal high-fat diet changes DNA methylation in the early embryo by disrupting the TCA cycle intermediary alpha ketoglutarate

in Reproduction
Authors:
Alexander Penn Robinson Research Institute, School of Biomedicine, Department of Reproduction and Development, University of Adelaide, Adelaide, South Australia, Australia

Search for other papers by Alexander Penn in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3011-4397
,
Nicole McPherson Robinson Research Institute, School of Biomedicine, Department of Reproduction and Development, University of Adelaide, Adelaide, South Australia, Australia
Repromed, Dulwich, South Australia, Australia
Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia

Search for other papers by Nicole McPherson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3492-9403
,
Tod Fullston Robinson Research Institute, School of Biomedicine, Department of Reproduction and Development, University of Adelaide, Adelaide, South Australia, Australia
Repromed, Dulwich, South Australia, Australia

Search for other papers by Tod Fullston in
Current site
Google Scholar
PubMed
Close
,
Bridget Arman Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia

Search for other papers by Bridget Arman in
Current site
Google Scholar
PubMed
Close
, and
Deirdre Zander-Fox Robinson Research Institute, School of Biomedicine, Department of Reproduction and Development, University of Adelaide, Adelaide, South Australia, Australia
Repromed, Dulwich, South Australia, Australia
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
Monash IVF Group, Melbourne, Victoria, Australia

Search for other papers by Deirdre Zander-Fox in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A Penn; Email: alexander.penn@adelaide.edu.au
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Maternal obesity can impair metabolism in the embryo and the resulting offspring. This study shows that metabolic disruptions through α-ketoglutarate may link altered metabolism with epigenetic changes in embryos.

Abstract

Maternal obesity can impair offspring metabolic health; however, the precise mechanism underpinning programming is unknown. Ten-Eleven translocase (TET) enzymes demethylate DNA using the TCA cycle intermediary α-ketoglutarate and may be involved in programming offspring health. Whether TETs are disrupted by maternal obesity is unknown. Five to six week-old C57Bl/6 female mice were fed a control diet (CD; 6% fat, n = 175) or a high-fat diet (HFD; 21% fat, n = 158) for 6 weeks. After superovulation, oocytes were collected for metabolic assessment, or females were mated and zygotes were cultured for embryo development, fetal growth, and assessment of global DNA methylation (5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC)) in the two-cell embryo. Zygotes collected from superovulated CBAF1 females were cultured in media containing α-ketoglutarate (0, 1.4, 3.5, or 14.0 mM) or with 2-hydroxyglutarate (2HG) (0 or 20 mM), a competitive inhibitor of α-ketoglutarate, with methylation and blastocyst differentiation assessed. After HFD, oocytes showed increased pyruvate oxidation and intracellular ROS, with no changes in Tet3 expression, while two-cell embryo global 5hmC DNA methylation was reduced and 5fC increased. Embryos cultured with 1.4 mM α-ketoglutarate had decreased two-cell 5mC, while 14.0 mM α-ketoglutarate increased the 5hmC:5mC ratio. In contrast, supplementation with 20 mM 2HG increased 5mC and decreased 5fC:5mC and 5caC:5mC ratios. α-ketoglutarate up to 3.5 mM did not alter embryo development, while culturing in 14.0 mM α-ketoglutarate blocked development at the two-cell. Culture with 2HG delayed embryo development past the four-cell and decreased blastocyst total cell number. In conclusion, disruptions in metabolic intermediates in the preimplantation embryo may provide a link between maternal obesity and programming offspring for ill health.

Supplementary Materials

 

  • Collapse
  • Expand
  • ABS 2011–2012 Australian Health Survey: First Results, Canberra, Australian Capital Territory, Canberra, Australian Capital Territory. Available at: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/4338.0~2011-13~Main%20Features~Overweight%20and%20obesity~10007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PWS, D’souza Z, Nakayama M, Matsuda M, Turp A & Ndjetehe E et al.2016 De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nature Cell Biology 18 225233. (https://doi.org/10.1038/ncb3296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andreas E, Reid M, Zhang W & Moley KH 2019 The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. Molecular Human Reproduction 25 717728. (https://doi.org/10.1093/molehr/gaz049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS & Torsoni MA 2012 Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. Journal of Nutritional Biochemistry 23 341348. (https://doi.org/10.1016/j.jnutbio.2010.12.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boney CM, Verma A, Tucker R & Vohr BR 2005 Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115 e290e296. (https://doi.org/10.1542/peds.2004-1808)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boots CE, Boudoures A, Zhang W, Drury A & Moley KH 2016 Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model. Human Reproduction 31 20902097. (https://doi.org/10.1093/humrep/dew181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boudoures AL, Saben J, Drury A, Scheaffer S, Modi Z, Zhang W & Moley KH 2017 Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Developmental Biology 426 126138. (https://doi.org/10.1016/j.ydbio.2017.04.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brison DR & Leese HJ 1991 Energy metabolism in late preimplantation rat embryos. Journal of Reproduction and Fertility 93 245251. (https://doi.org/10.1530/jrf.0.0930245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brison DR & Leese HJ 1994 Blastocoel cavity formation by preimplantation rat embryos in the presence of cyanide and other inhibitors of oxidative phosphorylation. Journal of Reproduction and Fertility 101 305309. (https://doi.org/10.1530/jrf.0.1010305)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell JM, Nottle MB, Vassiliev I, Mitchell M & Lane M 2012 Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway. Stem Cells and Development 21 24302441. (https://doi.org/10.1089/scd.2011.0598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao Z, Zhang M, Xu T, Chen Z, Tong X, Zhang D, Wang Y, Zhang L, Gao D & Luo L et al.2019 Vitrification of murine mature metaphase II oocytes perturbs DNA methylation reprogramming during preimplantation embryo development. Cryobiology 87 9198. (https://doi.org/10.1016/j.cryobiol.2019.01.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardozo ER, Karmon AE, Gold J, Petrozza JC & Styer AK 2016 Reproductive outcomes in oocyte donation cycles are associated with donor BMI. Human Reproduction 31 385392. (https://doi.org/10.1093/humrep/dev298)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carey BW, Finley LWS, Cross JR, Allis CD & Thompson CB 2015 Intracellular [agr]-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518 413416. (https://doi.org/10.1038/nature13981)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen F, Bian K, Tang Q, Fedeles BI, Singh V, Humulock ZT, Essigmann JM & Li D 2017 Oncometabolites d- and l-2-hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chemical Research in Toxicology 30 11021110. (https://doi.org/10.1021/acs.chemrestox.7b00009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi C, Ganji SK, Deberardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, Yang XL, Mashimo T, Raisanen JM & Marin-Valencia I et al.2012 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nature Medicine 18 624629. (https://doi.org/10.1038/nm.2682)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S & Keenan MC et al.2009 Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462 739744. (https://doi.org/10.1038/nature08617)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donnay I & Leese HJ 1999 Embryo metabolism during the expansion of the bovine blastocyst. Molecular Reproduction and Development 53 171178. (https://doi.org/10.1002/(SICI)1098-2795(199906)53:2<171::AID-MRD6>3.0.CO;2-F)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dumollard R, Ward Z, Carroll J & Duchen MR 2007 Regulation of redox metabolism in the mouse oocyte and embryo. Development 134 455–465. (https://doi.org/10.1242/dev.02744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A & Fernandez HF et al.2010 Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18 553567. (https://doi.org/10.1016/j.ccr.2010.11.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fullston T, Mitchell M, Wakefield S & Lane M 2011 Mitochondrial inhibition during preimplantation embryogenesis shifts the transcriptional profile of fetal mouse brain. Reproduction, Fertility, and Development 23 691701. (https://doi.org/10.1071/RD10292)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao W, Yu X, Hao J, Wang L, Qi M, Han L, Lin C & Wang D 2019 Ascorbic acid improves parthenogenetic embryo development through TET proteins in mice. Bioscience Reports 39. (https://doi.org/10.1042/BSR20181730)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner DK & Lane M 1993 Amino acids and ammonium regulate mouse embryo development in culture. Biology of Reproduction 48 377385. (https://doi.org/10.1095/biolreprod48.2.377)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner DK & Leese HJ 1986 Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Human Reproduction 1 2527. (https://doi.org/10.1093/oxfordjournals.humrep.a136336)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner DK & Leese HJ 1990 Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. Journal of Reproduction and Fertility 88 361368. (https://doi.org/10.1530/jrf.0.0880361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H & Sun QY 2014 DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet–induced obesity. Environmental Health Perspectives 122 159164. (https://doi.org/10.1289/ehp.1307047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP & Su SM et al.2010 Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. Journal of Experimental Medicine 207 339344. (https://doi.org/10.1084/jem.20092506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X & Jin SG et al.2011 The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477 606610. (https://doi.org/10.1038/nature10443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE, Gomez V, Hergovich A, Tirabosco R & Fernanda Amary M et al.2013 Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nature Communications 4 2166. (https://doi.org/10.1038/ncomms3166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP & Hu B et al.2014 Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15 447459. (https://doi.org/10.1016/j.stem.2014.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han L, Ren C, Li L, Li X, Ge J, Wang H, Miao YL, Guo X, Moley KH & Shu W et al.2018 Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nature Genetics 50 432442. (https://doi.org/10.1038/s41588-018-0055-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houghton FD & Leese HJ 2004 Metabolism and developmental competence of the preimplantation embryo. European Journal of Obstetrics, Gynecology, and Reproductive Biology 115(Supplement 1) S92S96. (https://doi.org/10.1016/j.ejogrb.2004.01.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houghton FD, Sheth B, Moran B, Leese HJ & Fleming TP 1996a Expression and activity of hexokinase in the early mouse embryo. Molecular Human Reproduction 2 793798. (https://doi.org/10.1093/molehr/2.10.793)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houghton FD, Thompson JG, Kennedy CJ & Leese HJ 1996b Oxygen consumption and energy metabolism of the early mouse embryo. Molecular Reproduction and Development 44 476485. (https://doi.org/10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>3.0.CO;2-I)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue A, Matoba S & Zhang Y 2012 Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Research 22 16401649. (https://doi.org/10.1038/cr.2012.160)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue A, Shen L, Dai Q, He C & Zhang Y 2011 Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Research 21 16701676. (https://doi.org/10.1038/cr.2011.189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue A, Shen L, Matoba S & Zhang Y 2015 Haploinsufficiency, but not defective paternal 5mC oxidation, accounts for the developmental defects of maternal Tet3 knockouts. Cell Reports 10 463470. (https://doi.org/10.1016/j.celrep.2014.12.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iqbal K, Jin SG, Pfeifer GP & Szabó PE 2011 Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences of the United States of America 108 36423647. (https://doi.org/10.1073/pnas.1014033108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito S, D’alessio AC, Taranova OV, Hong K, Sowers LC & Zhang Y 2010 Role of Tet proteins in 5mC to 5hmC conversion, ES cell self-renewal, and ICM specification. Nature 466 11291133. (https://doi.org/10.1038/nature09303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C & Zhang Y 2011 Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333 13001303. (https://doi.org/10.1126/science.1210597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeong JK, Kang MH, Gurunathan S, Cho SG, Park C, Seo HG & Kim JH 2014 Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR). BMC Research Notes 7 675. (https://doi.org/10.1186/1756-0500-7-675)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G, Krex D, Lu Q & Pfeifer GP 2011 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Research 71 73607365. (https://doi.org/10.1158/0008-5472.CAN-11-2023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joberty G, Boesche M, Brown JA, Eberhard D, Garton NS, Humphreys PG, Mathieson T, Muelbaier M, Ramsden NG & Reader V et al.2016 Interrogating the druggability of the 2-oxoglutarate-dependent dioxygenase target class by chemical proteomics. ACS Chemical Biology 11 20022010. (https://doi.org/10.1021/acschembio.6b00080)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE & Moley KH 2010 Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151 40394046. (https://doi.org/10.1210/en.2010-0098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang E, Wu G, Ma H, Li Y, Tippner-Hedges R, Tachibana M, Sparman M, Wolf DP, Scholer HR & Mitalipov S 2014 Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature 509 101104. (https://doi.org/10.1038/nature13134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U & Gross S et al.2012 Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483 484488. (https://doi.org/10.1038/nature10898)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I & Bardella C 2011 Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One 6 e19868. (https://doi.org/10.1371/journal.pone.0019868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurotaki YK, Hatanaka Y, Kamimura S, Oikawa M, Inoue H, Ogonuki N, Inoue K & Ogura A 2015 Impaired active DNA demethylation in zygotes generated by round spermatid injection. Human Reproduction 30 11781187. (https://doi.org/10.1093/humrep/dev039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lane M & Gardner DK 1995 Removal of embryo-toxic ammonium from the culture medium by in situ enzymatic conversion to glutamate. Journal of Experimental Zoology 271 356363. (https://doi.org/10.1002/jez.1402710505)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lane M & Gardner DK 1998 Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Human Reproduction 13 991997. (https://doi.org/10.1093/humrep/13.4.991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lane M & Gardner DK 2005 Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. Journal of Biological Chemistry 280 1836118367. (https://doi.org/10.1074/jbc.M500174200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lane M, Robker RL & Robertson SA 2014 Parenting from before conception. Science 345 756760. (https://doi.org/10.1126/science.1254400)

  • Lee K, Hamm J, Whitworth K, Spate L, Park KW, Murphy CN & Prather RS 2014 Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Developmental Biology 386 8695. (https://doi.org/10.1016/j.ydbio.2013.11.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leese HJ 1991 Metabolism of the preimplantation mammalian embryo. Oxford Reviews of Reproductive Biology 13 35–72.

  • Leese HJ 1995 Metabolic control during preimplantation mammalian development. Human Reproduction Update 1 6372. (https://doi.org/10.1093/humupd/1.1.63)

  • Leese HJ & Barton AM 1984 Pyruvate and glucose uptake by mouse ova and preimplantation embryos. Journal of Reproduction and Fertility 72 913. (https://doi.org/10.1530/jrf.0.0720009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leonardi R, Subramanian C, Jackowski S & Rock CO 2012 Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. Journal of Biological Chemistry 287 1461514620. (https://doi.org/10.1074/jbc.C112.353946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y & O’Neill C 2013 5′-Methylcytosine and 5′-hydroxymethylcytosine Each Provide Epigenetic Information to the Mouse Zygote. PLoS One 8 e63689. (https://doi.org/10.1371/journal.pone.0063689)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y & O'Neill C 2012 Persistence of cytosine Methylation of DNA following Fertilisation in the Mouse. PLoS One 7 e30687. (https://doi.org/10.1371/journal.pone.0030687)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Losman JA & Kaelin WG 2013 What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes and Development 27 836852. (https://doi.org/10.1101/gad.217406.113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME & Melnick A et al.2012 IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483 474478. (https://doi.org/10.1038/nature10860)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maus A & Peters GJ 2017 Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids 49 2132. (https://doi.org/10.1007/s00726-016-2342-9)

  • Mcpherson NO, Bell VG, Zander-Fox DL, Fullston T, Wu LL, Robker RL & Lane M 2015 When two obese parents are worse than one! Impacts on embryo and fetal development. American Journal of Physiology - Endocrinology and Metabolism 309 E568E581. (https://doi.org/10.1152/ajpendo.00230.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mcpherson NO, Zander-Fox D & Lane M 2014 Stimulation of mitochondrial embryo metabolism by dichloroacetic acid in an aged mouse model improves embryo development and viability. Fertility and Sterility 101 14581466. (https://doi.org/10.1016/j.fertnstert.2013.12.057)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Musial B, Vaughan OR, Fernandez‐Twinn DS, Voshol P, Ozanne SE, Fowden AL & Sferruzzi‐Perri AN 2017 A Western‐style obesogenic diet alters maternal metabolic physiology with consequences for fetal nutrient acquisition in mice. Journal of Physiology 595 48754892. (https://doi.org/10.1113/JP273684)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakagawa T, Lv L, Nakagawa M, Yu Y, Yu C, D’alessio AC, Nakayama K, Fan HY, Chen X & Xiong Y 2015 CRL4VprBP E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Molecular Cell 57 247260. (https://doi.org/10.1016/j.molcel.2014.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Necula LG, Mambet C, Albulescu R & Diaconu CC 2015 Epigenetics in gastric carcinogenesis: tet genes as important players. Journal of Immunoassay and Immunochemistry 36 445455. (https://doi.org/10.1080/15321819.2015.1017402)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nettersheim D, Heukamp LC, Fronhoffs F, Grewe MJ, Haas N, Waha A, Honecker F, Waha A, Kristiansen G & Schorle H 2013 Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLoS One 8 e82881. (https://doi.org/10.1371/journal.pone.0082881)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C & Abera SF et al.2014 Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384 766781. (https://doi.org/10.1016/S0140-6736(1460460-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikitaras V, Zander-Fox D & Mcpherson NO 2021 Improving sperm oxidative stress and embryo quality in advanced paternal age using idebenone in vitro—A proof-of-concept study. Antioxidants 10 1079. (https://doi.org/10.3390/antiox10071079)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfeifer GP, Kadam S & Jin SG 2013 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics and Chromatin 6 1010. (https://doi.org/10.1186/1756-8935-6-10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, Salamon N, Chou AP, Yong WH & Soto H et al.2012 Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. Journal of Neuro-Oncology 107 197205. (https://doi.org/10.1007/s11060-011-0737-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reynolds KA, Boudoures AL, Chi MM-Y, Wang Q & Moley KH 2015 Adverse effects of obesity and/or high-fat diet on oocyte quality and metabolism are not reversible with resumption of regular diet in mice. Reproduction, Fertility and Development 27 716724. (https://doi.org/10.1071/RD14251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robert C, Mcgraw S, Massicotte L, Pravetoni M, Gandolfi F & Sirard MA 2002 Quantification of housekeeping transcript levels during the development of bovine preimplantation embryos. Biology of Reproduction 67 14651472. (https://doi.org/10.1095/biolreprod.102.006320)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Samuelsson AM, Matthews PA, Argenton M, Christie MR, Mcconnell JM, Jansen EHJM, Piersma AH, Ozanne SE, Twinn DF & Remacle C et al.2008 Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51 383392. (https://doi.org/10.1161/HYPERTENSIONAHA.107.101477)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santos F, Hendrich B, Reik W & Dean W 2002 Dynamic reprogramming of DNA methylation in the early mouse embryo. Developmental Biology 241 172182. (https://doi.org/10.1006/dbio.2001.0501)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santos F, Peters AH, Otte AP, Reik W & Dean W 2005 Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Developmental Biology 280 225236. (https://doi.org/10.1016/j.ydbio.2005.01.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, Cairns RA, McCracken S, Wakeham A & Haight J et al.2012 D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes and Development 26 20382049. (https://doi.org/10.1101/gad.198200.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasson IE, Vitins AP, Mainigi MA, Moley KH & Simmons RA 2015 Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 58 615624. (https://doi.org/10.1007/s00125-014-3466-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scourzic L, Mouly E & Bernard OA 2015 TET proteins and the control of cytosine demethylation in cancer. Genome Medicine 7 9. (https://doi.org/10.1186/s13073-015-0134-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen L, Inoue A, He J, Liu Y, Lu F & Zhang Y 2014a Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15 459471. (https://doi.org/10.1016/j.stem.2014.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen L, Song CX, He C & Zhang Y 2014b Mechanism and function of oxidative reversal of DNA and RNA methylation. Annual Review of Biochemistry 83 585614. (https://doi.org/10.1146/annurev-biochem-060713-035513)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simmons JM, Müller TA & Hausinger RP 2008 Fe(II)/alpha-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Dalton Transactions 38 51325142. (https://doi.org/10.1039/b803512a)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sudhamalla B, Dey D, Breski M & Islam K 2017 A rapid mass spectrometric method for the measurement of catalytic activity of ten-eleven translocation enzymes. Analytical Biochemistry 534 2835. (https://doi.org/10.1016/j.ab.2017.06.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR & Aravind L et al.2009 Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (New York, NY) 324 930935. (https://doi.org/10.1126/science.1170116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tran KA, Dillingham CM & Sridharan R 2019 The role of α-ketoglutarate-dependent proteins in pluripotency acquisition and maintenance. Journal of Biological Chemistry 294 54085419. (https://doi.org/10.1074/jbc.TM118.000831)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trimarchi JR, Liu L, Porterfield DM, Smith PJS & Keefe DL 2000 Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biology of Reproduction 62 18661874. (https://doi.org/10.1095/biolreprod62.6.1866)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsukada Y-I, Akiyama T & Nakayama KI 2015 Maternal TET3 is dispensable for embryonic development but is required for neonatal growth. Scientific Reports 5 15876. (https://doi.org/10.1038/srep15876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wakefield SL, Lane M & Mitchell M 2011 Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biology of Reproduction 84 572580. (https://doi.org/10.1095/biolreprod.110.087262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wakefield SL, Lane M, Schulz SJ, Hebart ML, Thompson JG & Mitchell M 2008 Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. American Journal of Physiology - Endocrinology and Metabolism 294 E425E434. (https://doi.org/10.1152/ajpendo.00409.2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittingham DG 1969 The failure of lactate and phosphoenolpyruvate to support development of the mouse zygote in vitro. Biology of Reproduction 1 381386. (https://doi.org/10.1095/biolreprod1.4.381)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu LL-Y, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ & Robker RL 2010 High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates. Endocrinology 151 54385445. (https://doi.org/10.1210/en.2010-0551)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu SC & Zhang Y 2010 Active DNA demethylation: many roads lead to Rome. Nature Reviews. Molecular Cell Biology 11 607–620. (https://doi.org/10.1038/nrm2950)

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P & Xiao MT et al.2011 Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19 1730. (https://doi.org/10.1016/j.ccr.2010.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye D, Ma S, Xiong Y & Guan KL 2013 R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell 23 274276. (https://doi.org/10.1016/j.ccr.2013.03.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu C, Zhang Y-L, Pan W-W, Li X-M, Wang Z-W, Ge Z-J, Zhou J-J, Cang Y, Tong C & Sun QY et al.2013 CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342 15181521. (https://doi.org/10.1126/science.1244587)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zander DL, Thompson JG & Lane M 2006 Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biology of Reproduction 74 288294. (https://doi.org/10.1095/biolreprod.105.046235)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zander-Fox D, Villarosa L & Mcpherson NO 2021 Albumin used in human IVF contain different levels of lipids and modify embryo and fetal growth in a mouse model. Journal of Assisted Reproduction and Genetics 38 23712381. (https://doi.org/10.1007/s10815-021-02255-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zander-Fox DL, Fullston T, Mcpherson NO, Sandeman L, Kang WX, Good SB, Spillane M & Lane M 2015 Reduction of mitochondrial function by FCCP during mouse cleavage stage embryo culture reduces birth weight and impairs the metabolic health of offspring. Biology of Reproduction 92 124. (https://doi.org/10.1095/biolreprod.114.123489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Q, Liu X, Gao W, Li P, Hou J, Li J & Wong J 2014 Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-Acetylglucosamine transferase (OGT). Journal of Biological Chemistry 289 59865996. (https://doi.org/10.1074/jbc.M113.524140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, He C, Zhang L, Zhu T, Lv D, Li G, Song Y, Wang J, Wu H & Ji P et al.2019 Alpha-ketoglutarate affects murine embryo development through metabolic and epigenetic modulations. Reproduction 158 123133. (https://doi.org/10.1530/REP-19-0018)

    • PubMed
    • Search Google Scholar
    • Export Citation