Is seminal nerve growth factor-induced luteinizing hormone release in camelids mediated at the hypothalamus?

in Reproduction
Authors:
Rodrigo A Carrasco Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Rodrigo A Carrasco in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4271-5544
,
Sergio Pezo Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Sergio Pezo in
Current site
Google Scholar
PubMed
Close
,
Eric M Zwiefelhofer Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Eric M Zwiefelhofer in
Current site
Google Scholar
PubMed
Close
,
Emily E Lanigan Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Emily E Lanigan in
Current site
Google Scholar
PubMed
Close
,
Jaswant Singh Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Jaswant Singh in
Current site
Google Scholar
PubMed
Close
,
Marco A Berland Escuela de Medicina Veterinaria, Facultad de Recursos Naturales, Universidad Catolica de Temuco, Temuco, Chile

Search for other papers by Marco A Berland in
Current site
Google Scholar
PubMed
Close
,
Cesar Ulloa-Leal Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile

Search for other papers by Cesar Ulloa-Leal in
Current site
Google Scholar
PubMed
Close
,
Marcelo H Ratto Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile

Search for other papers by Marcelo H Ratto in
Current site
Google Scholar
PubMed
Close
, and
Gregg P Adams Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Gregg P Adams in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4207-2881

Correspondence should be addressed to G P Adams; Email: gregg.adams@usask.ca
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Seminal nerve growth factor induces ovulation in camelids by influencing the secretion of gonadotrophin-releasing hormone (GnRH) into the portal vessels of the pituitary gland. We show that the nerve growth factor-induced release of GnRH is not mediated directly through interaction with hypothalamic neurons.

Abstract

Ovulation in camelids is triggered by seminal nerve growth factor (NGF). The mechanism of action of NGF appears to occur via the central nervous system. In this study, we tested the hypothesis that NGF acts in the hypothalamus to induce GnRH release. To determine if NGF-induced ovulation is associated with a rise in NGF concentrations in the cerebrospinal fluid (CSF), llamas were i) mated with an urethrostomized male, ii) mated with intact male, or given intrauterine iii) seminal plasma or i.v.) saline (Experiment 1). To characterize the luteinizing hormone (LH) response after central vs peripheral administration, llamas were treated with saline (negative control) or NGF either by i.v. or intracerebroventricular (ICV) administration (Experiment 2). To determine the role of kisspeptin, the effect of ICV infusion of a kisspeptin receptor antagonist on NGF-induced LH secretion and ovulation was tested in llamas (Experiment 3). In Experiment 1, a surge in circulating concentrations of LH was detected only in llamas mated with an intact male and those given intrauterine seminal plasma, but no changes in CSF concentrations of NGF were detected. In Experiment 2, peripheral administration (i.v.) of NGF induced an LH surge and ovulation, whereas no response was detected after central (ICV) administration. In Experiment 3, the kisspeptin receptor antagonist had no effect on the LH response to NGF. In conclusion, results did not support the hypothesis that NGF-induced ovulation is mediated via a trans-synaptic pathway within the hypothalamus, but rather through a releasing effect on tanycytes at the median eminence.

Supplementary Materials

 

  • Collapse
  • Expand
  • Adams GP, Griffin PG & Ginther OJ 1989 In situ morphologic dynamics of ovaries, uterus, and cervix in llamas. Biology of Reproduction 41 551558. (https://doi.org/10.1095/biolreprod41.3.551)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adams GP, Ratto MH, Huanca W & Singh J 2005 Ovulation-inducing factor in the seminal plasma of alpacas and llamas. Biology of Reproduction 73 452457. (https://doi.org/10.1095/biolreprod.105.040097)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adams GP, Ratto MH, Silva ME & & Carrasco RA 2016 Ovulation-inducing factor (OIF/NGF) in seminal plasma: a review and update. Reproduction in Domestic Animals 51(Supplement 2) 417. (https://doi.org/10.1111/rda.12795)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banks WA 2009 Characteristics of compounds that cross the blood-brain barrier. BMC Neurology 9(Supplement 1) S3. (https://doi.org/10.1186/1471-2377-9-S1-S3)

  • Berland MA, Ulloa-Leal C, Barría M, Wright H, Dissen GA, Silva ME, Ojeda SR & Ratto MH 2016 Seminal plasma induces ovulation in llamas in the absence of a copulatory stimulus: role of nerve growth factor as an ovulation-inducing factor. Endocrinology 157 32243232. (https://doi.org/10.1210/en.2016-1310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blurton-Jones MM, Roberts JA & Tuszynski MH 1999 Estrogen receptor immunoreactivity in the adult primate brain: neuronal distribution and association with p75, trkA, and choline acetyltransferase. Journal of Comparative Neurology 405 529542. (https://doi.org/10.1002/(SICI)1096-9861(19990322)405:4<529::AID-CNE6>3.0.CO;2-Y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bogle OA, Ratto MH & Adams GP 2012 Ovulation-inducing factor (OIF) induces LH secretion from pituitary cells. Animal Reproduction Science 133 117122. (https://doi.org/10.1016/j.anireprosci.2012.06.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borson S, Schatteman G, Claude P & Bothwell M 1994 Neurotrophins in the developing and adult primate adenohypophysis: a new pituitary hormone system? Neuroendocrinology 59 466476. (https://doi.org/10.1159/000126693)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bothwell SW, Janigro D & Patabendige A 2019 Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids and Barriers of the CNS 16 9. (https://doi.org/10.1186/s12987-019-0129-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrasco RA, Leonardi CE, Hutt K, Singh J & Adams GP 2020 Kisspeptin induces LH release and ovulation in an induced ovulator†. Biology of Reproduction 103 4959. (https://doi.org/10.1093/biolre/ioaa051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrasco RA, Leonardi CE, Pezo S & Adams GP 2021a Hypothalamic involvement and the role of progesterone in the NGF-induced LH surge pathway. Reproduction 162 171179. (https://doi.org/10.1530/REP-20-0647)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrasco RA, Singh J & Adams GP 2018 Distribution and morphology of gonadotropin-releasing hormone neurons in the hypothalamus of an induced ovulator - the llama (Lama glama). General and Comparative Endocrinology 263 4350. (https://doi.org/10.1016/j.ygcen.2018.04.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrasco RA, Singh J, Ratto MH & Adams GP 2021b Neuroanatomical basis of the nerve growth factor ovulation-induction pathway in llamas†. Biology of Reproduction 104 578588. (https://doi.org/10.1093/biolre/ioaa223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casaccia-Bonnefil P, Carter BD, Dobrowsky RT & & Chao MV 1996 Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383 716719. (https://doi.org/10.1038/383716a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clarkson J, Han SY, Piet R, McLennan T, Kane GM, Ng J, Porteous RW, Kim JS, Colledge WH & Iremonger KJ et al.2017 Definition of the hypothalamic GnRH pulse generator in mice. Proceedings of the National Academy of Sciences of the United States of America 114 E10216E10223. (https://doi.org/10.1073/pnas.1713897114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dechant G & Barde YA 2002 The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nature Neuroscience 5 11311136. (https://doi.org/10.1038/nn1102-1131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferguson IA, Schweitzer JB, Bartlett PF & Johnson EM 1991 Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors. Journal of Comparative Neurology 313 680692. (https://doi.org/10.1002/cne.903130411)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandez-Baca S, Madden DH & Novoa C 1970 Effect of different mating stimuli on induction of ovulation in the alpaca. Journal of Reproduction and Fertility 22 261267. (https://doi.org/10.1530/jrf.0.0220261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foradori CD, Whitlock BK, Daniel JA, Zimmerman AD, Jones MA, Read CC, Steele BP, Smith JT, Clarke IJ & Elsasser TH et al.2017 Kisspeptin stimulates growth hormone release by utilizing neuropeptide Y pathways and is dependent on the presence of ghrelin in the ewe. Endocrinology 158 35263539. (https://doi.org/10.1210/en.2017-00303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV & Parada LF 1991 The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252 554558. (https://doi.org/10.1126/science.1850549)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • King JC & & Anthony EL 1984 LHRH neurons and their projections in humans and other mammals: species comparisons. Peptides 5(Supplement 1) 195207. (https://doi.org/10.1016/0196-9781(8490277-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knopf L, Kastelic JP, Schallenberger E & Ginther OJ 1989 Ovarian follicular dynamics in heifers: test of two-wave hypothesis by ultrasonically monitoring individual follicles. Domestic Animal Endocrinology 6 111119. (https://doi.org/10.1016/0739-7240(8990040-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koh S & Higgins GA 1991 Differential regulation of the low-affinity nerve growth factor receptor during postnatal development of the rat brain. Journal of Comparative Neurology 313 494508. (https://doi.org/10.1002/cne.903130310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langlet F, Mullier A, Bouret SG, Prevot V & Dehouck B 2013 Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. Journal of Comparative Neurology 521 33893405. (https://doi.org/10.1002/cne.23355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehman MN, Hileman SM & Goodman RL 2013 Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Advances in Experimental Medicine and Biology 784 2762. (https://doi.org/10.1007/978-1-4614-6199-9_3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moenter SM 2010 Identified GnRH neuron electrophysiology: a decade of study. Brain Research 1364 1024. (https://doi.org/10.1016/j.brainres.2010.09.066)

  • Mullier A, Bouret SG, Prevot V & Dehouck B 2010 Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. Journal of Comparative Neurology 518 943962. (https://doi.org/10.1002/cne.22273)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paolicchi F, Urquieta B, Del Valle L & Bustos-Obregón E 1999 Biological activity of the seminal plasma of alpacas: stimulus for the production of LH by pituitary cells. Animal Reproduction Science 54 203210. (https://doi.org/10.1016/s0378-4320(9800150-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pinet-Charvet C, Fleurot R, Derouin-Tochon F, de Graaf S, Druart X, Tsikis G, Taragnat C, Teixeira-Gomes AP, Labas V & Moreau T et al.2020 Beta-nerve growth factor stimulates spontaneous electrical activity of in vitro embryonic mouse GnRH neurons through a P75 mediated-mechanism. Scientific Reports 10 10654. (https://doi.org/10.1038/s41598-020-67665-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pioro EP & Cuello AC 1990 Distribution of nerve growth factor receptor-like immunoreactivity in the adult rat central nervous system. Effect of colchicine and correlation with the cholinergic system--I. Neuroscience 34 5787. (https://doi.org/10.1016/0306-4522(9090304-m)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pradier P, Jalenques I, Dalle M, Reuling R, Despres G & Romand R 1994 Distribution and metabolism patterns of plasma 7S- and beta-NGF in the adult male rat. Journal of Physiology, Paris 88 273277. (https://doi.org/10.1016/0928-4257(9490008-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ratto MH, Berland M, Silva ME & Adams GP 2019 New insights of the role of β-NGF in the ovulation mechanism of induced ovulating species. Reproduction 157 R199R207. (https://doi.org/10.1530/REP-18-0305)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ratto MH, Delbaere LT, Leduc YA, Pierson RA & & Adams GP 2011 Biochemical isolation and purification of ovulation-inducing factor (OIF) in seminal plasma of llamas. Reproductive Biology and Endocrinology 9 24. (https://doi.org/10.1186/1477-7827-9-24)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ratto MH, Huanca W & Adams GP 2010 Ovulation-inducing factor: a protein component of llama seminal plasma. Reproductive Biology and Endocrinology: RB&E 8 44. (https://doi.org/10.1186/1477-7827-8-44)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ratto MH, Leduc YA, Valderrama XP, van Straaten KE, Delbaere LTJ, Pierson RA & Adams GP 2012 The nerve of ovulation-inducing factor in semen. Proceedings of the National Academy of Sciences of the United States of America 109 1504215047. (https://doi.org/10.1073/pnas.1206273109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ratto MH, Singh J, Huanca W & Adams GP 2003 Ovarian follicular wave synchronization and pregnancy rate after fixed-time natural mating in llamas. Theriogenology 60 16451656. (https://doi.org/10.1016/s0093-691x(0300176-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rawlings NC, Jeffcoate IA & Rieger DL 1984 The influence of estradiol-17beta and progesterone on peripheral serum concentrations of luteinizing hormone and follicle stimulating hormone in the ovariectomized ewe. Theriogenology 22 473488. (https://doi.org/10.1016/0093-691x(8490047-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodríguez EM, Blázquez JL & Guerra M 2010 The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 31 757776. (https://doi.org/10.1016/j.peptides.2010.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodríguez EM, Blázquez JL, Pastor FE, Peláez B, Peña P, Peruzzo B & Amat P 2005 Hypothalamic tanycytes: a key component of brain-endocrine interaction. International Review of Cytology 247 89164. (https://doi.org/10.1016/S0074-7696(0547003-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M & Moenter SM et al.2009 Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. Journal of Neuroscience 29 39203929. (https://doi.org/10.1523/JNEUROSCI.5740-08.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • San-Martin M, Copaira M, Zuniga J, Rodreguez R, Bustinza G & Acosta L 1968 Aspects of reproduction in the alpaca. Journal of Reproduction and Fertility 16 395399. (https://doi.org/10.1530/jrf.0.0160395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva M, Fernández A, Ulloa-Leal C, Adams GP, Berland MA & Ratto MH 2015 LH release and ovulatory response after intramuscular, intravenous, and intrauterine administration of β-nerve growth factor of seminal plasma origin in female llamas. Theriogenology 84 10961102. (https://doi.org/10.1016/j.theriogenology.2015.06.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva ME, Smulders JP, Guerra M, Valderrama XP, Letelier C, Adams GP & & Ratto MH 2011 Cetrorelix suppresses the preovulatory LH surge and ovulation induced by ovulation-inducing factor (OIF) present in llama seminal plasma. Reproductive Biology and Endocrinology 9 74. (https://doi.org/10.1186/1477-7827-9-74)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silverman AJ, Krey LC & Zimmerman EA 1979 A comparative study of the luteinizing hormone releasing hormone (LHRH) neuronal networks in mammals. Biology of Reproduction 20 98110. (https://doi.org/10.1093/biolreprod/20.1.98)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanco VM, Ratto MH, Lazzarotto M & Adams GP 2011 Dose-response of female llamas to ovulation-inducing factor from seminal plasma. Biology of Reproduction 85 452456. (https://doi.org/10.1095/biolreprod.111.091876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tricoire H, Malpaux B & Møller M 2003 Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. Journal of Comparative Neurology 456 3947. (https://doi.org/10.1002/cne.10477)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valderrama XP, Goicochea JF, Silva ME & & Ratto MH 2019 The effect of seminal plasma β-NGF on follicular fluid hormone concentration and gene expression of steroidogenic enzymes in llama granulosa cells. Reproductive Biology and Endocrinology 17 60. (https://doi.org/10.1186/s12958-019-0504-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veening JG & Barendregt HP 2010 The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Research 7 1. (https://doi.org/10.1186/1743-8454-7-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang L, Guo W, Shen X, Yeo S, Long H, Wang Z, Lyu Q, Herbison AE & Kuang Y 2020 Different dendritic domains of the GnRH neuron underlie the pulse and surge modes of GnRH secretion in female mice. eLife 9 e53945. (https://doi.org/10.7554/eLife.53945)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan Q & Johnson EM 1989 Immunohistochemical localization and biochemical characterization of nerve growth factor receptor in adult rat brain. Journal of Comparative Neurology 290 585598. (https://doi.org/10.1002/cne.902900411)

    • PubMed
    • Search Google Scholar
    • Export Citation