Whole-genome DNA methylation analysis of the sperm in relation to bull fertility

in Reproduction
Authors:
Ying ZhangCentre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada

Search for other papers by Ying Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5036-0448
,
Camila Bruna de LimaCentre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada

Search for other papers by Camila Bruna de Lima in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6043-0190
,
Rémi LabrecqueSEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC, Canada

Search for other papers by Rémi Labrecque in
Current site
Google Scholar
PubMed
Close
, and
Marc André SirardCentre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada

Search for other papers by Marc André Sirard in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8667-6682
View More View Less

Correspondence should be addressed to M Sirard; Email: marc-andre.sirard@fsaa.ulaval.ca
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

Bull fertility is an important economic trait, this study identified some DNA methylation biomarkers that are associated with bull fertility.

Abstract

Subfertile bulls may cause huge economic losses in dairy production since their semen could be used to inseminate thousands of cows by artificial insemination. This study adopted whole-genome enzymatic methyl sequencing and aimed to identify candidate DNA methylation markers in bovine sperm that correlate with bull fertility. Twelve bulls were selected (high bull fertility = 6; low bull fertility = 6) based on the industry’s internally used Bull Fertility Index. After sequencing, a total of 450 CpG had a DNA methylation difference higher than 20% (q < 0.01) had been screened. The 16 most significant differentially methylated regions (DMRs) were identified using a 10% methylation difference cut-off (q < 5.88 × 10−16). Interestingly, most of the differentially methylated cytosines (DMCs) and DMRs were distributed on the X and Y chromosomes, demonstrating that the sex chromosomes play essential roles in bull fertility. Additionally, the functional classification showed that the beta-defensin family, zinc finger protein family, and olfactory and taste receptors could be clustered. Moreover, the enriched G protein-coupled receptors such as neurotransmitter receptors, taste receptors, olfactory receptors, and ion channels indicated that the acrosome reaction and capacitation processes are pivotal for bull fertility. In conclusion, this study identified the sperm-derived bull fertility-associated DMRs and DMCs at the whole genome level, which could complement and integrate into the existing genetic evaluation methods, increasing our decisive capacity to select good bulls and explain bull fertility better in the future.

Supplementary Materials

 

  • Collapse
  • Expand
  • Agarwal A, Barbăroșie C, Ambar R & & Finelli R 2020 The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction. International Journal of Molecular Sciences 21 3882. (https://doi.org/10.3390/ijms21113882)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A & & Mason CE 2012 methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biology 13 R87. (https://doi.org/10.1186/gb-2012-13-10-r87)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ali MA, Wang Y, Qin Z, Yuan X, Zhang Y & & Zeng C 2021 Odorant and taste receptors in sperm chemotaxis and cryopreservation: roles and implications in sperm capacitation, motility and fertility. Genes (Basel) 12. (https://doi.org/10.3390/genes12040488)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, De Alexandre RB, Ahmad F, Manganiello V & & Stratakis CA 2014 Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocrine Reviews 35 195233. (https://doi.org/10.1210/er.2013-1053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbagallo F, La Vignera S, Cannarella R, Aversa A, Calogero AE & & Condorelli RA 2020 Evaluation of sperm mitochondrial function: a key organelle for sperm motility. Journal of Clinical Medicine 9. (https://doi.org/10.3390/jcm9020363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Batra V, Maheshwarappa A, Dagar K, Kumar S, Soni A, Kumaresan A, Kumar R & & Datta TK 2019 Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis). BMC Evolutionary Biology 19 214. (https://doi.org/10.1186/s12862-019-1535-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z & & Galon J 2009 ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25 10911093. (https://doi.org/10.1093/bioinformatics/btp101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bolger AM, Lohse M & & Usadel B 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 21142120. (https://doi.org/10.1093/bioinformatics/btu170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butler ML, Bormann JM, Weaber RL, Grieger DM & & Rolf MM 2020 Selection for bull fertility: a review. Translational Animal Science 4 423441. (https://doi.org/10.1093/tas/txz174)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chakrabarty A & & Roberts MR 2007 Ets-2 and C/EBP-beta are important mediators of ovine trophoblast Kunitz domain protein-1 gene expression in trophoblast. BMC Molecular Biology 8 14. (https://doi.org/10.1186/1471-2199-8-14)

    • Search Google Scholar
    • Export Citation
  • Chang TC, Yang Y, Retzel EF & & Liu WS 2013 Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. Proceedings of the National Academy of Sciences of the United States of America 110 12373–12378. (https://doi.org/10.1073/pnas.1221104110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Correa RG, Krajewska M, Ware CF, Gerlic M & & Reed JC 2014 The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling. Oncotarget 5 1666–1682. (https://doi.org/10.18632/oncotarget.1850)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costes V, Chaulot-Talmon A, Sellem E, Perrier JP, Aubert-Frambourg A, Jouneau L, Pontlevoy C, Hozé C, Fritz S & Boussaha M et al.2022 Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clinical Epigenetics 14 54. (https://doi.org/10.1186/s13148-022-01275-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, Morales-Pacheco M, Trujillo-Bornios SI & & Rodríguez-Dorantes M 2021 New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Frontiers in Oncology 11 627229. (https://doi.org/10.3389/fonc.2021.627229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • DeJarnette JM, Marshall CE, Lenz RW, Monke DR, Ayars WH & & Sattler CG 2004 Sustaining the fertility of artificially inseminated dairy cattle: the role of the artificial insemination industry. Journal of Dairy Science 87 E93E104. (https://doi.org/10.3168/jds.S0022-0302(0470065-X)

    • Search Google Scholar
    • Export Citation
  • Dunleavy JEM, O’bryan MK, Stanton PG & & O’donnell L 2019 The cytoskeleton in spermatogenesis. Reproduction 157 R53R72. (https://doi.org/10.1530/REP-18-0457)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan HY & & Sun QY 2004 Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in Mammals1. Biology of Reproduction 70 535547. (https://doi.org/10.1095/biolreprod.103.022830)

    • Search Google Scholar
    • Export Citation
  • Gao T, Li K, Liang F, Yu J, Liu A, Ni Y & & Sun P 2021 KCNQ1 potassium channel expressed in human sperm is involved in sperm motility, acrosome reaction, protein tyrosine phosphorylation, and ion homeostasis during capacitation. Frontiers in Physiology 12 761910. (https://doi.org/10.3389/fphys.2021.761910)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao X, Shi MY, Yuan ZR, Chen RY, Zhou ZK, Li J, Li JY, Gao HJ & & Xu SZ 2012 Identification and isolation of gene differentially expressed on scrotal circumference in crossbreed bulls. African Journal of Biotechnology 11 490497. (https://doi.org/10.5897/ajb11.2467)

    • Search Google Scholar
    • Export Citation
  • Giesecke K, Hamann H, Stock KF, Woehlke A, Sieme H & & Distl O 2009 Evaluation of SPATA1‐associated markers for stallion fertility. Animal Genetics 40 359365. (https://doi.org/10.1111/j.1365-2052.2008.01844.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Governini L, Semplici B, Pavone V, Crifasi L, Marrocco C, De Leo V, Arlt E, Gudermann T, Boekhoff I & Luddi A et al.2020 Expression of taste Receptor 2 subtypes in human testis and sperm. Journal of Clinical Medicine 9 264. (https://doi.org/10.3390/jcm9010264)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gross N, Peñagaricano F & & Khatib H 2020 Integration of whole‐genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Animal Genetics 51 502510. (https://doi.org/10.1111/age.12941)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han Y & & Peñagaricano F 2016 Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genetics 17 143. (https://doi.org/10.1186/s12863-016-0454-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hong SR & & Shin K-J 2021 Bisulfite-Converted DNA Quantity Evaluation: A Multiplex Quantitative Real-Time PCR System for Evaluation of Bisulfite Conversion. Frontiers in Genetics 12. (https://doi.org/10.3389/fgene.2021.618955)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC & & Lempicki RA 2007 The David Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology 8 R183. (https://doi.org/10.1186/gb-2007-8-9-r183)

    • Search Google Scholar
    • Export Citation
  • Inaba K & & Mizuno K 2016 Sperm dysfunction and ciliopathy. Reproductive Medicine and Biology 15 7794. (https://doi.org/10.1007/s12522-015-0225-5)

  • Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J & & Khatib H 2017 Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 18 280. (https://doi.org/10.1186/s12864-017-3673-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krueger F & & Andrews SR 2011 Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27 15711572. (https://doi.org/10.1093/bioinformatics/btr167)

    • Search Google Scholar
    • Export Citation
  • Kutchy NA, Velho A, Menezes ESB, Jacobsen M, Thibaudeau G, Wills RW, Moura A, Kaya A, Perkins A & & Memili E 2017 Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility-a pilot study. Reproductive Biology and Endocrinology: RB&E 15 5959. (https://doi.org/10.1186/s12958-017-0274-1)

    • Search Google Scholar
    • Export Citation
  • Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I & & Sirard MA 2018 Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology 106 2129. (https://doi.org/10.1016/j.theriogenology.2017.10.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Blévec E, Muroňová J, Ray PF & & Arnoult C 2020 Paternal epigenetics: mammalian sperm provide much more than DNA at fertilization. Molecular and Cellular Endocrinology 518 110964. (https://doi.org/10.1016/j.mce.2020.110964)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H 2018 Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34 30943100. (https://doi.org/10.1093/bioinformatics/bty191)

  • Lin YH, Kuo YC, Chiang HS & & Kuo PL 2011 The role of the septin family in spermiogenesis. Spermatogenesis 1 298302. (https://doi.org/10.4161/spmg.1.4.18326)

  • Liu Y, Zan L, Zhao S, Xin Y, Jiao Y & & Li K 2012 Molecular characterization, expression pattern, polymorphism and association analysis of bovine ADAMTSL3 gene. Molecular Biology Reports 39 15511560. (https://doi.org/10.1007/s11033-011-0894-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu S, Chen S, Cai W, Yin H, Liu A, Li Y, Liu GE, Wang Y, Yu Y & & Zhang S 2019 Divergence analyses of sperm DNA methylomes between monozygotic twin AI bulls. Epigenomes 3 21. (https://doi.org/10.3390/epigenomes3040021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matos B, Publicover SJ, Castro LFC, Esteves PJ & & Fardilha M 2021 Brain and testis: more alike than previously thought? Open Biology 11 200322. (https://doi.org/10.1098/rsob.200322)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mi H & & Thomas P 2009 PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods in Molecular Biology 563 123140. (https://doi.org/10.1007/978-1-60761-175-2_7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mueller JL, Skaletsky H, Brown LG, Zaghlul S, Rock S, Graves T, Auger K, Warren WC, Wilson RK & & Page DC 2013 Independent specialization of the human and mouse X chromosomes for the male germ line. Nature Genetics 45 10831087. (https://doi.org/10.1038/ng.2705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Narud B, Klinkenberg G, Khezri A, Zeremichael TT, Stenseth EB, Nordborg A, Haukaas TH, Morrell JM, Heringstad B & Myromslien FD et al.2020 Differences in sperm functionality and intracellular metabolites in Norwegian Red bulls of contrasting fertility. Theriogenology 157 2432. (https://doi.org/10.1016/j.theriogenology.2020.07.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Narud B, Khezri A, Zeremichael TT, Stenseth EB, Heringstad B, Johannisson A, Morrell JM, Collas P, Myromslien FD & & Kommisrud E 2021 Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Molecular Reproduction and Development 88 187200. (https://doi.org/10.1002/mrd.23461)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nowicka-Bauer K & & Szymczak-Cendlak M 2021 Structure and function of ion channels regulating sperm motility-an overview. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms22063259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pacheco HA, Rezende FM & & Peñagaricano F 2020 Gene mapping and genomic prediction of bull fertility using sex chromosome markers. Journal of Dairy Science 103 33043311. (https://doi.org/10.3168/jds.2019-17767)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parisi AM, Thompson SK, Kaya A & & Memili E 2014 Molecular, cellular, and physiological determinants of bull fertility. Turkish Journal of Veterinary and Animal Sciences 38 637642. (https://doi.org/10.3906/vet-1404-76)

    • Search Google Scholar
    • Export Citation
  • Puente MA, Tartaglione CM & & Ritta MN 2011 Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Animal Reproduction Science 127 3137. (https://doi.org/10.1016/j.anireprosci.2011.07.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rezende FM, Dietsch GO & & Peñagaricano F 2018 Genetic dissection of bull fertility in US Jersey dairy cattle. Animal Genetics 49 393402. (https://doi.org/10.1111/age.12710)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ritta MN, Bas DE & & Tartaglione CM 2004 In vitro effect of gamma-aminobutyric acid on bovine spermatozoa capacitation. Molecular Reproduction and Development 67 478486. (https://doi.org/10.1002/mrd.20038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saraf KK, Kumaresan A, Sinha MK & & Datta TK 2021 Spermatozoal transcripts associated with oxidative stress and mitochondrial membrane potential differ between high- and low-fertile crossbred bulls. Andrologia 53 e14029. (https://doi.org/10.1111/and.14029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B & & Ideker T 2003 Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13 24982504. (https://doi.org/10.1101/gr.1239303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sironen A, Shoemark A, Patel M, Loebinger MR & & Mitchison HM 2020 Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cellular and Molecular Life Sciences 77 20292048. (https://doi.org/10.1007/s00018-019-03389-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Štiavnická M, Chaulot-Talmon A, Perrier JP, Hošek P, Kenny DA, Lonergan P, Kiefer H & & Fair S 2022 Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility. BMC Genomics 23 379. (https://doi.org/10.1186/s12864-022-08614-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutovsky P, Hauser R & & Sutovsky M 2004 Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Human Reproduction 19 628638. (https://doi.org/10.1093/humrep/deh131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeda K, Kobayashi E, Ogata K, Imai A, Sato S, Adachi H, Hoshino Y, Nishino K, Inoue M & Kaneda M et al.2021 Differentially methylated CpG sites related to fertility in Japanese Black bull spermatozoa: epigenetic biomarker candidates to predict sire conception rate. Journal of Reproduction and Development 67 99107. (https://doi.org/10.1262/jrd.2020-137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ugur MR, Guerreiro DD, Moura AA & & Memili E 2022 Identification of biomarkers for bull fertility using functional genomics. Animal Reproduction 19 e20220004. (https://doi.org/10.1590/1984-3143-AR2022-0004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton BS & Marks K et al.2021 Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Research 31 12801289. (https://doi.org/10.1101/gr.266551.120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verma A, Rajput S, DE, S, Kumar R, Chakravarty AK & & Datta TK 2014 Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology 82 750-759.e1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang HQ, Tuominen LK & & Tsai CJ 2011 SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures. Bioinformatics 27 225231. (https://doi.org/10.1093/bioinformatics/btq650)

    • Search Google Scholar
    • Export Citation
  • Wreczycka K, Gosdschan A, Yusuf D, Grüning B, Assenov Y & & Akalin A 2017 Strategies for analyzing bisulfite sequencing data. Journal of Biotechnology 261 105-115. (https://doi.org/10.1016/j.jbiotec.2017.08.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu G, Wang LG & & He QY 2015 ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31 23822383. (https://doi.org/10.1093/bioinformatics/btv145)

    • Search Google Scholar
    • Export Citation
  • Zhang Y & & Sirard MA 2021 Epigenetic inheritance of acquired traits through DNA methylation. Animal Frontiers: the Review Magazine of Animal Agriculture 11 1927. (https://doi.org/10.1093/af/vfab052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang D-L, Sun Y-J, Ma M-L, Y-j Wang, Lin H, Li R-R, Liang Z-L, Gao Y, Yang Z, He D-F et al. 2018 Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. eLife 7 e33432. (https://doi.org/10.7554/eLife.33432https://doi.org/10.7554%2FeLife.33432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang L, Zhen J, Huang Q, Liu H, Li W, Zhang S, Min J, Li Y, Shi L & Woods J et al.2020 Mouse spermatogenesis-associated protein 1 (SPATA1), an IFT20 binding partner, is an acrosomal protein. Developmental Dynamics 249 543555. (https://doi.org/10.1002/dvdy.141)

    • PubMed
    • Search Google Scholar
    • Export Citation