The CASR antagonist NPS2143 induces loss of acrosomal integrity and proteolysis of SPACA1 in boar spermatozoa

in Reproduction
Authors:
Beatriz Macías-GarcíaDepartamento de Medicina Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G + C, Universidad de Extremadura, Cáceres, Spain

Search for other papers by Beatriz Macías-García in
Current site
Google Scholar
PubMed
Close
and
Lauro González-FernándezDepartamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G + C, Universidad de Extremadura, Cáceres, Spain

Search for other papers by Lauro González-Fernández in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5568-548X
View More View Less

Correspondence should be addressed to L González-Fernández; Email: lgonfer@unex.es
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

The mechanism by which p32 protein increases during capacitation in boar spermatozoa is unknown. This manuscript shows a new mechanism of induction of p32 in boar spermatozoa: the proteolysis of the phosphorylated and glycosylated form of SPACA1.

Abstract

Protein tyrosine phosphorylation (PY) induction is associated with sperm capacitation. We previously showed that calcium-sensing receptor (CASR) inhibition by NPS2143 induces the 32 kDa tyrosine-phosphorylated protein (p32) in boar spermatozoa. We showed that NPS2143 induced an increase in p32 and loss of acrosomal integrity in live and dead spermatozoa in capacitating conditions (Tyrode's complete medium); the p32 rise occurred in dead spermatozoa, as shown by flow cytometry sorting. EGTA addition blunted the increase in p32, the loss of acrosomal integrity, and the increase in dead spermatozoa induced by NPS2143, indicating that the effects of NPS2143 are calcium-dependent. Mass spectrometry was used to identify which tyrosine-phosphorylated proteins were induced by NPS2143, but only serine/threonine-phosphorylated proteins were found; among these, SPACA1 was identified with different molecular weights (18, 32, and 35–45 kDa). We confirmed tyrosine phosphorylation of SPACA1 at 32 and 35–45 kDa by immunoprecipitation and co-localization of PY and SPACA1 in the presence of NPS2143 by immunofluorescence. The molecular weight of SPACA1 (35–45 kDa) decreased after treatment with peptide-N-glycosidase F, indicating that this protein is N-glycosylated. The soybean trypsin inhibitor (STI), a serine protease inhibitor, suppressed the appearance of p32 and SPACA1 (30 and 32 kDa) induced by NPS2143. Also, 8-Br-cAMP and A23187 treatments induced an increase in p32 and SPACA1 (30–32 kDa) and a parallel induction of the acrosome reaction. These findings suggest that CASR inhibition induces loss of acrosomal integrity and proteolysis of the glycosylated and phosphorylated SPACA1 (35–45 kDa) resulting in a SPACA1 rise at 32 kDa (p32).

 

  • Collapse
  • Expand
  • Austin CR 1951 Observations on the penetration of the sperm in the mammalian egg. Australian Journal of Scientific Research. Ser. B 4 581596. (https://doi.org/10.1071/bi9510581)

    • Search Google Scholar
    • Export Citation
  • Bailey JL, Tardif S, Dube C, Beaulieu M, Reyes-Moreno C, Lefievre L & & Leclerc P 2005 Use of phosphoproteomics to study tyrosine kinase activity in capacitating boar sperm. Kinase activity and capacitation. Theriogenology 63 599614. (https://doi.org/10.1016/j.theriogenology.2004.09.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boisen IM, Rehfeld A, Mos I, Poulsen NN, Nielsen JE, Schwarz P, Rejnmark L, Dissing S, Bach-Mortensen P & Juul A et al.2021 The calcium-sensing receptor is essential for calcium and bicarbonate sensitivity in human spermatozoa. Journal of Clinical Endocrinology and Metabolism 106 e1775–e1792. (https://doi.org/10.1210/clinem/dgaa937)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bravo MM, Aparicio IM, Garcia-Herreros M, Gil MC, Peña FJ & & Garcia-Marin LJ 2005 Changes in tyrosine phosphorylation associated with true capacitation and capacitation-like state in boar spermatozoa. Molecular Reproduction and Development 71 8896. (https://doi.org/10.1002/mrd.20286)

    • Search Google Scholar
    • Export Citation
  • Brohi RD & & Huo LJ 2017 Posttranslational modifications in spermatozoa and effects on male fertility and sperm viability. Omics 21 245256. (https://doi.org/10.1089/omi.2016.0173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown EM 2013 Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Practice and Research. Clinical Endocrinology and Metabolism 27 333343. (https://doi.org/10.1016/j.beem.2013.02.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J & & Hebert SC 1993 Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366 575580. (https://doi.org/10.1038/366575a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang MC 1951 Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168 697698. (https://doi.org/10.1038/168697b0)

  • Christofferson DE, Li Y & & Yuan J 2014 Control of life-or-death decisions by RIP1 kinase. Annual Review of Physiology 76 129150. (https://doi.org/10.1146/annurev-physiol-021113-170259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, Barratt C, Kirkman-Brown J & & Publicover S 2009 Ca2+ stores in sperm: their identities and functions. Reproduction 138 425437. (https://doi.org/10.1530/rep-09-0134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dorval V, Dufour M & & Leclerc P 2003 Role of protein tyrosine phosphorylation in the thapsigargin-induced intracellular Ca(2+) store depletion during human sperm acrosome reaction. Molecular Human Reproduction 9 125131. (https://doi.org/10.1093/molehr/gag017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dube C, Tardif S, Leclerc P & & Bailey JL 2003 The importance of calcium in the appearance of p32, a boar sperm tyrosine phosphoprotein, during in vitro capacitation. Journal of Andrology 24 727733. (https://doi.org/10.1002/j.1939-4640.2003.tb02734.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dube C, Leclerc P, Baba T, Reyes-Moreno C & & Bailey JL 2005 The proacrosin binding protein, sp32, is tyrosine phosphorylated during capacitation of pig sperm. Journal of Andrology 26 519528. (https://doi.org/10.2164/jandrol.04163)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrer M, Rodriguez H, Zara L, Yu Y, Xu W & & Oko R 2012a MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell and Tissue Research 349 881895. (https://doi.org/10.1007/s00441-012-1429-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrer M, Xu W & & Oko R 2012b The composition, protein genesis and significance of the inner acrosomal membrane of eutherian sperm. Cell and Tissue Research 349 733748. (https://doi.org/10.1007/s00441-012-1433-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M & & Okabe M 2012 SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development 139 35833589. (https://doi.org/10.1242/dev.081778)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • González-Fernández L, Macias-Garcia B, Loux SC, Varner DD & & Hinrichs K 2013 Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm. Biology of Reproduction 88 138. (https://doi.org/10.1095/biolreprod.112.107078)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hao Z, Wolkowicz MJ, Shetty J, Klotz K, Bolling L, Sen B, Westbrook VA, Coonrod S, Flickinger CJ & & Herr JC 2002 SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biology of Reproduction 66 735744. (https://doi.org/10.1095/biolreprod66.3.735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harayama H, Sasaki K & & Miyake M 2004 A unique mechanism for cyclic adenosine 3',5'-monophosphate-induced increase of 32-kDa tyrosine-phosphorylated protein in boar spermatozoa. Molecular Reproduction and Development 69 194204. (https://doi.org/10.1002/mrd.20099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardwick LJA, Azzarelli R & & Philpott A 2018 2018 cell cycle-dependent phosphorylation and regulation of cellular differentiation. Biochemical Society Transactions 46 10831091. (https://doi.org/10.1042/BST20180276)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG & & Seidman CE 1995 A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nature Genetics 11 389394. (https://doi.org/10.1038/ng1295-389)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hurtado de Llera A, Martin-Hidalgo D, Rodriguez-Gil JE, Gil MC, Garcia-Marin LJ & & Bragado MJ 2013 AMP-activated kinase, AMPK, is involved in the maintenance of plasma membrane organization in boar spermatozoa. Biochimica et Biophysica Acta 1828 21432151. (https://doi.org/10.1016/j.bbamem.2013.05.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue N, Ikawa M & & Okabe M 2008 Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochemical and Biophysical Research Communications 377 910914. (https://doi.org/10.1016/j.bbrc.2008.10.073)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • James GT 1978 Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Analytical Biochemistry 86 574579. (https://doi.org/10.1016/0003-2697(7890784-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin SK & & Yang WX 2017 Factors and pathways involved in capacitation: how are they regulated? Oncotarget 8 36003627. (https://doi.org/10.18632/oncotarget.12274)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F & & Howes EA 2008 The equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated proteins. Biology of Reproduction 79 421431. (https://doi.org/10.1095/biolreprod.107.067314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kato Y, Kumar S, Lessard C & & Bailey JL 2021 ACRBP (Sp32) is involved in priming sperm for the acrosome reaction and the binding of sperm to the zona pellucida in a porcine model. PLoS One 16 e0251973. (https://doi.org/10.1371/journal.pone.0251973)

    • Search Google Scholar
    • Export Citation
  • Kwon WS, Rahman MS & & Pang MG 2014 Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphotyrosine proteins. Journal of Proteome Research 13 45054517. (https://doi.org/10.1021/pr500524p)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee CR, Park YH, Min H, Kim YR & & Seok YJ 2019 Determination of protein phosphorylation by polyacrylamide gel electrophoresis. Journal of Microbiology 57 93100. (https://doi.org/10.1007/s12275-019-9021-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu C, Liu Y, Larsen K, Hou YP & & Callesen H 2018 Calcium-sensing receptor (CASR) is involved in porcine in vitro fertilisation and early embryo development. Reproduction, Fertility, and Development 30 391398. (https://doi.org/10.1071/RD16338)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez-Salguero JB, Fierro R, Michalski JC, Jimenez-Morales I, Lefebvre T, Mondragon-Payne O, Baldini SF, Vercoutter-Edouart AS & & Gonzalez-Marquez H 2020 Identification of lipid raft glycoproteins obtained from boar spermatozoa. Glycoconjugate Journal 37 499509. (https://doi.org/10.1007/s10719-020-09924-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macias-Garcia B, Rocha A & & González-Fernández L 2016 Extracellular calcium regulates protein tyrosine phosphorylation through calcium-sensing receptor (CaSR) in stallion sperm. Molecular Reproduction and Development 83 236245. (https://doi.org/10.1002/mrd.22615)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macias-Garcia B, Lopes G, Rocha A & & González-Fernández L 2017 Role of the calcium-sensing receptor (CaSR) in bovine gametes and during in vitro fertilization. Theriogenology 95 6974. (https://doi.org/10.1016/j.theriogenology.2017.03.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macias-Garcia B, Garcia-Marin LJ, Bragado MJ & & González-Fernández L 2019 The calcium-sensing receptor regulates protein tyrosine phosphorylation through PDK1 in boar spermatozoa. Molecular Reproduction and Development 86 751761. (https://doi.org/10.1002/mrd.23160)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marin-Briggiler CI, Gonzalez-Echeverria F, Buffone M, Calamera JC, Tezon JG & & Vazquez-Levin MH 2003 Calcium requirements for human sperm function in vitro. Fertility and Sterility 79 13961403. (https://doi.org/10.1016/s0015-0282(0300267-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marin-Briggiler CI, Jha KN, Chertihin O, Buffone MG, Herr JC, Vazquez-Levin MH & & Visconti PE 2005 Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation. Journal of Cell Science 118 20132022. (https://doi.org/10.1242/jcs.02326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin-Hidalgo D, Macias-Garcia B & & González-Fernández L 2022 Influence of different cellular concentrations of boar sperm suspensions on the induction of capacitation and acrosome reaction. Journal of Reproduction and Development 68 6873. (https://doi.org/10.1262/jrd.2021-075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendoza FJ, Perez-Marin CC, Garcia-Marin L, Madueno JA, Henley C, Guilera-Tejero E & & Rodriguez M 2012 Localization, distribution, and function of the calcium-sensing receptor in sperm. Journal of Andrology 33 96104. (https://doi.org/10.2164/jandrol.110.011254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Navajas R, Paradela A & & Albar JP 2011 Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry. Methods in Molecular Biology 681 337348. (https://doi.org/10.1007/978-1-60761-913-0_18)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ogura Y, Takagishi Y & & Harayama H 2016 Changes in the distribution and molecular mass of boar sperm acrosome-associated 1 proteins during the acrosome reaction; their validity as indicators for occurrence of the true acrosome reaction. Animal Reproduction Science 172 94104. (https://doi.org/10.1016/j.anireprosci.2016.07.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shevchenko A, Wilm M, Vorm O & & Mann M 1996 Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry 68 850858. (https://doi.org/10.1021/ac950914h)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Signorelli J, Diaz ES & & Morales P 2012 Kinases, phosphatases and proteases during sperm capacitation. Cell and Tissue Research 349 765782. (https://doi.org/10.1007/s00441-012-1370-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh V, Ram M, Kumar R, Prasad R, Roy BK & & Singh KK 2017 Phosphorylation: implications in cancer. Protein Journal 36 16. (https://doi.org/10.1007/s10930-017-9696-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tabuchi T, Shidara O & & Harayama H 2008 A 32-kDa tyrosine-phosphorylated protein shows a protease-dependent increase in dead boar spermatozoa. Journal of Reproduction and Development 54 502507. (https://doi.org/10.1262/jrd.20021)

    • Search Google Scholar
    • Export Citation
  • Tardif S, Dube C, Chevalier S & & Bailey JL 2001 Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biology of Reproduction 65 784792. (https://doi.org/10.1095/biolreprod65.3.784)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P & & Kopf GS 1995 Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121 11391150. (https://doi.org/10.1242/dev.121.4.1139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang N, Zhang X, Li X, Liu C, Yang M, Han B, Hai C, Su G, Li G & & Zhao Y 2022 Cysteine is highly enriched in the canonical N-linked glycosylation motif of bovine spermatozoa N-Glycoproteome. Theriogenology 184 112. (https://doi.org/10.1016/j.theriogenology.2022.02.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z & Su Y et al.2022 Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Molecular and Cellular Proteomics 21 100214. (https://doi.org/10.1016/j.mcpro.2022.100214)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamatoya K, Kousaka M, Ito C, Nakata K, Hatano M, Araki Y & & Toshimori K 2020 Cleavage of SPACA1 regulates assembly of sperm-egg membrane fusion machinery in mature spermatozoadagger. Biology of Reproduction 102 750757. (https://doi.org/10.1093/biolre/ioz223)

    • PubMed
    • Search Google Scholar
    • Export Citation