Paradigm shift in frog sperm cryopreservation: reduced role for non-penetrating cryoprotectants

in Reproduction
Authors:
Rose UptonConservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
FAUNA Research Alliance, PO Box 5092, Kahibah, NSW, Australia

Search for other papers by Rose Upton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1324-6873
,
Simon ClulowFAUNA Research Alliance, PO Box 5092, Kahibah, NSW, Australia
Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia

Search for other papers by Simon Clulow in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5700-6345
,
Kim ColyvasCollege of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia

Search for other papers by Kim Colyvas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6966-760X
,
Michael MahonyConservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
FAUNA Research Alliance, PO Box 5092, Kahibah, NSW, Australia

Search for other papers by Michael Mahony in
Current site
Google Scholar
PubMed
Close
, and
John ClulowConservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
FAUNA Research Alliance, PO Box 5092, Kahibah, NSW, Australia

Search for other papers by John Clulow in
Current site
Google Scholar
PubMed
Close
View More View Less

Correspondence should be addressed to R Upton; Email: rose.upton@newcastle.edu.au
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

Sperm cryopreservation has been recognised as a tool for preventing loss of genetic diversity in amphibians; however, the combined effect of penetrative and non-penetrative cryoprotectants in cryodiluents is poorly understood. We demonstrate a clear benefit of using low concentrations of non-penetrative cryoprotectants when cryopreserving sperm of Australian tree frogs.

Abstract

Sperm cryopreservation protocols have been developed for an increasing number of amphibian species since the recognition of a global amphibian decline. Yet, the development of these protocols has neglected to elucidate the combined effect of the penetrative(PCP) and non-penetrative cryoprotectant (NPCP) on the recovery of live, motile sperm. The two-factor hypothesis of cryoinjury recognises a trade-off between cooling cells slowly enough to allow osmotic dehydration and therefore avoid intracellular ice formation, but fast enough to minimise effects from increasing extracellular osmolality as the frozen fraction of the media increases during freezing. We tested the effect of two concentrations of a PCP (10 and 15% v/v dimethyl sulfoxide (Me2SO)) and two concentrations of an NPCP (1 and 10% w/v sucrose) in various combinations on the sperm of six pelodryadid frogs. In all species, 15% v/v Me2SO with 1% w/v sucrose provided superior post-thaw recovery with high proportions of forward progressive motility, live cells and intact acrosomes (typically >50% for each). Theoretically, it has been suggested that increased NPCP concentration should improve cell survival by increasing the rate and extent of cell dehydration. We suggest, however, that the elevated osmolality in the unfrozen water fraction when 10% sucrose is used may be causing damage to cells via excessive cell shrinkage and solute effects as proposed in the two-factor hypothesis of cryoinjury. We showed this response in sperm across a range of frog species, providing compelling evidence for this hypothesis. We suggest protocol development using the PCP/NPCP ratios demonstrated in our study will be broadly applicable to many amphibian species.

Supplementary Materials

 

  • Collapse
  • Expand
  • Aboagla EM-E & & Terada T 2003 Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biology of Reproduction 69 12451250. (https://doi.org/10.1095/biolreprod.103.017889)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barton HL & & Gutman SL 1972 Low temperture preservation of toad spermatozoa (Genus Bufo). Texas Journal of Science 23 363370.

  • Bates D, Mächler M, Bolker B & & Walker S 2015 Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 148. (https://doi.org/10.18637/jss.v067.i01)

    • Search Google Scholar
    • Export Citation
  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD & McDonald KR et al.1998 Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95 90319036. (https://doi.org/10.1073/pnas.95.15.9031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Billard R 1978 Changes in structure and fertilizing ability of marine and freshwater fish spermatozoa diluted in media of various salinities. Aquaculture 14 187198. (https://doi.org/10.1016/0044-8486(7890094-7)

    • Search Google Scholar
    • Export Citation
  • Billard R 1983 Ultrastructure of trout spermatozoa: changes after dilution and deep-freezing. Cell and Tissue Research 228 205218. (https://doi.org/10.1007/BF00204873)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blanco JM, Long JA, Gee G, Wildt DE & & Donoghue AM 2012 Comparative cryopreservation of avian spermatozoa: effects of freezing and thawing rates on turkey and sandhill crane sperm cryosurvival. Animal Reproduction Science 131 18. (https://doi.org/10.1016/j.anireprosci.2012.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bower DS, Lips KR, Schwarzkopf L, Georges A & & Clulow S 2017 Amphibians on the brink. Science 357 454–455. (https://doi.org/10.1126/science.aao0500)

  • Browne RK, Clulow J, Mahony MJ & & Clark AK 1998 Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm. Cryobiology 37 339345. (https://doi.org/10.1006/cryo.1998.2129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Browne RK, Clulow J & & Mahony MJ 2002a The effect of saccharides on the post-thaw recovery of cane toad (Bufo marinus) spermatozoa. Cryo Letters 23 121128.

  • Browne RK, Clulow J & & Mahony MJ 2002b The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. Cryo Letters 23 129136.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Browne RK, Davis J, Pomering M & & Clulow J 2002c Storage of cane toad Bufo marinus sperm for 6 days at 0°C with subsequent cryopreservation. Reproduction, Fertility, and Development 14 267273. (https://doi.org/10.1071/rd01045)

    • Search Google Scholar
    • Export Citation
  • Browne RK, Mahony MJ & & Clulow J 2002d A comparison of sucrose, saline, and saline with egg-yolk diluents on the cryopreservation of cane toad (Bufo marinus) sperm. Cryobiology 44 251257. (https://doi.org/10.1016/s0011-2240(0200031-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Browne RK, Silla AJ, Upton R, Della-Togna G, Marcec-Greaves R, Shishova NV, Uteshev VK, Proano B, Perez OD & Mansour N et al.2019 Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 133 187200. (https://doi.org/10.1016/j.theriogenology.2019.03.035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell L, Clulow J, Doody JS & & Clulow S 2021 Optimal cooling rates for sperm cryopreservation in a threatened lizard conform to two-factor hypothesis of cryo-injury. Cryobiology 103 101106. (https://doi.org/10.1016/j.cryobiol.2021.09.001)

    • Search Google Scholar
    • Export Citation
  • Christensen JR, Pauli BD, Richardson JS, Bishop CA & & Elliott J 2004 Effects of pH and dilution on African clawed frog (Xenopus laevis) sperm motility. Canadian Journal of Zoology 82 555563. (https://doi.org/10.1139/z04-021)

    • Search Google Scholar
    • Export Citation
  • Clulow J & & Clulow S 2016 Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed. Reproduction, Fertility, and Development 28. (https://doi.org/10.1071/RD15466)

    • Search Google Scholar
    • Export Citation
  • Clulow J, Upton R, Trudeau VL & & Clulow S 2019 Amphibian assisted reproductive technologies: moving from technology to application. In Reproductive Sciences in Animal Conservation. Comizzoli P, Brown JL, Holt WV Eds. Cham: Springer International Publishing 413463. (https://doi.org/10.1007/978-3-030-23633-5_14)

    • Search Google Scholar
    • Export Citation
  • Clulow S, Clulow J, Marcec-Greaves R, Della Togna G & & Calatayud NE 2022 Common goals, different stages: the state of the ARTs for reptile and amphibian conservation. Reproduction, Fertility, and Development 34 iix. (https://doi.org/10.1071/RDv34n5_FO)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooper TG, Barfield JP & & Yeung CH 2008 The tonicity of murine epididymal spermatozoa and their permeability towards common cryoprotectants and epididymal osmolytes. Reproduction 135 625633. (https://doi.org/10.1530/REP-07-0573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drevius LO 1972 Bull spermatozoa as osmometers. Journal of Reproduction and Fertility 28 2939. (https://doi.org/10.1530/jrf.0.0280029)

  • Duellman WE, Marion AB & & Hedges SB 2016 Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). Zootaxa 4104 1109. (https://doi.org/10.11646/zootaxa.4104.1.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Edwards DL, Mahony MJ & & Clulow J 2004 Effect of sperm concentration, medium osmolality, and oocyte storage on artificial fertilisation success in a myobatrachid frog (Limnodynastes tasmaniensis). Reproduction, Fertility, and Development 16 347354. (https://doi.org/10.10371/RD02079)

    • Search Google Scholar
    • Export Citation
  • Elliott GD, Wang S & & Fuller BJ 2017 Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76 7491. (https://doi.org/10.1016/j.cryobiol.2017.04.004)

    • Search Google Scholar
    • Export Citation
  • Fitzsimmons C, Mclaughlin EA, Mahony MJ & & Clulow J 2007 Optimisation of handling, activation and assessment procedures for Bufo marinus spermatozoa. Reproduction, Fertility, and Development 19 594601. (https://doi.org/10.1071/rd06124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fowler A & & Toner M 2005 Cryo-injury and biopreservation. Annals of the New York Academy of Sciences 1066 119135. (https://doi.org/10.1196/annals.1363.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao D & & Critser JK 2000 Mechanisms of cryoinjury in living cells. ILAR Journal 41 187196. (https://doi.org/10.1093/ilar.41.4.187)

  • Geyle HM, Hoskin CJ, Bower DS, Catullo R, Clulow S, Driessen M, Daniels K, Garnett ST, Gilbert D & Heard GW et al.2022 Red hot frogs: identifying the Australian frogs most at risk of extinction. Pacific Conservation Biology 28 211223. (https://doi.org/10.1071/PC21019)

    • Search Google Scholar
    • Export Citation
  • Gutiérrez-Pérez O, Juárez-Mosqueda MDL, Carvajal SU & & Ortega MET 2009 Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity. Cryobiology 58 287292. (https://doi.org/10.1016/j.cryobiol.2009.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hagedorn M, Ricker J, Mccarthy M, Meyers SA, Tiersch TR, Varga ZM & & Kleinhans FW 2009 Biophysics of zebrafish (Danio rerio) sperm. Cryobiology 58 1219. (https://doi.org/10.1016/j.cryobiol.2008.09.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Havemeyer RN 1966 Freezing point curve of dimethyl sulfoxide—water solutions. Journal of Pharmaceutical Sciences 55 851853. (https://doi.org/10.1002/jps.2600550822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holt WV 2000 Basic aspects of frozen storage of semen. Animal Reproduction Science 62 322. (https://doi.org/10.1016/s0378-4320(0000152-4)

  • Inoda T & & Morisawa M 1987 Effect of osmolality on the initiation of sperm motility in Xenopus laevis. Comparative Biochemistry and Physiology. A, Comparative Physiology 88 539542. (https://doi.org/10.1016/0300-9629(8790077-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lenth R, Singmann H, Love J, Buerkner P & & Herve M 2018 Emmeans: estimated marginal means, aka least-squares means [Online]. Available at: https://CRAN.R-project.org/package=emmeans). Available at: (https://CRAN.R-project.org/package=emmeans). Available at: (https://CRAN.R-project.org/package=emmeans [Accessed 11/11/2020].

    • Search Google Scholar
    • Export Citation
  • Levine H & & Slade L 1988 Thermomechanical properties of small-carbohydrate–water glasses and ‘rubbers’. Kinetically metastable systems at sub-zero temperatures. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 84 26192633. (https://doi.org/10.1039/f19888402619)

    • Search Google Scholar
    • Export Citation
  • Longcore JE, Pessier AP & & Nichols DK 1999 Batrachochytrium dendrobatidis gen. et sp. nov., a Chytrid Pathogenic to Amphibians. Mycologia 91 219227. (https://doi.org/10.1080/00275514.1999.12061011)

    • Search Google Scholar
    • Export Citation
  • Mansour N, Lahnsteiner F & & Patzner RA 2009 Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 72 12211228. (https://doi.org/10.1016/j.theriogenology.2009.07.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mansour N, Lahnsteiner F & & Patzner RA 2010 Motility and cryopreservation of spermatozoa of European common frog, Rana temporaria. Theriogenology 74 724732. (https://doi.org/10.1016/j.theriogenology.2010.03.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazur P 1963 Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. Journal of General Physiology 47 347369. (https://doi.org/10.1085/jgp.47.2.347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazur P 1970 Cryobiology: the freezing of biological systems. Science 168 939949. (https://doi.org/10.1126/science.168.3934.939)

  • Mazur P & & Cole KW 1985 Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes. Cryobiology 22 509536. (https://doi.org/10.1016/0011-2240(8590029-x)

    • Search Google Scholar
    • Export Citation
  • Mazur P, Leibo SP & & Chu EHY 1972 A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells. Experimental Cell Research 71 345355. (https://doi.org/10.1016/0014-4827(7290303-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mosca F, Madeddu M, Sayed AA, Zaniboni L, Iaffaldano N & & Cerolini S 2016 Combined effect of permeant and non-permeant cryoprotectants on the quality of frozen/thawed chicken sperm. Cryobiology 73 343347. (https://doi.org/10.1016/j.cryobiol.2016.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mugnano JA, Costanzo JP, Beesley SG & & Lee RE 1998 Evaluation of glycerol and dimethyl sulfoxide for the cryopreservation of spermatozoa from the wood frog (Rana sylvatica). Cryoletters 19 249254.

    • Search Google Scholar
    • Export Citation
  • Muldrew K, Schachar J, Cheng P, Rempel C, Liang S & & Wan R 2009 The possible influence of osmotic poration on cell membrane water permeability. Cryobiology 58 6268. (https://doi.org/10.1016/j.cryobiol.2008.10.129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pearl E, Morrow S, Noble A, Lerebours A, Horb M & & Guille M 2017 An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 92 149155. (https://doi.org/10.1016/j.theriogenology.2017.01.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pegg DE 2007 Principles of cryopreservation. In Cryopreservation and Freeze-Drying Protocols. Day JG, & Stacey GN Eds. Totowa, NJ: Humana Press 3957. (https://doi.org/10.1007/978-1-59745-362-2_3)

    • Search Google Scholar
    • Export Citation
  • Roos Y & & Karel M 1991 Amorphous state and delayed ice formation in sucrose solutions. International Journal of Food Science and Technology 26 553566. (https://doi.org/10.1111/j.1365-2621.1991.tb02001.x)

    • Search Google Scholar
    • Export Citation
  • Rusco G, Di Iorio M, Gibertoni PP, Esposito S, Penserini M, Roncarati A, Cerolini S & & Iaffaldano N 2019 Optimization of sperm cryopreservation protocol for Mediterranean brown trout: A comparative study of non-permeating cryoprotectants and thawing rates in vitro and in vivo. Animals: An Open Access Journal from MDPI 9 304. (https://doi.org/10.3390/ani9060304)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sargent MG & & Mohun TJ 2005 Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 41 4146. (https://doi.org/10.1002/gene.20092)

  • Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T & Catenazzi A et al.2019 Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363 14591463. (https://doi.org/10.1126/science.aav0379)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Si W, Benson JD, Men H & & Critser JK 2006 Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm. Cryobiology 53 3363 48. (https://doi.org/10.1016/j.cryobiol.2006.09.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sieme H, Oldenhof H & & Wolkers WF 2016 Mode of action of cryoprotectants for sperm preservation. Animal Reproduction Science 169 25. (https://doi.org/10.1016/j.anireprosci.2016.02.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Upton R, Clulow S, Calatayud NE, Colyvas K, Seeto RGY, Wong LAM, Mahony MJ & & Clulow J 2021 Generation of reproductively mature offspring from the endangered green and golden bell frog <i>Litoria aurea</i> using cryopreserved spermatozoa. Reproduction, Fertility, and Development 33 562572. (https://doi.org/10.1071/RD20296)

    • Search Google Scholar
    • Export Citation
  • Upton R, Clulow S, Mahony MJ & & Clulow J 2018a Generation of a sexually mature individual of the Eastern dwarf tree frog, Litoria fallax, from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development. Conservation Physiology 6 coy043coy043. (https://doi.org/10.1093/conphys/coy043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Upton R, Clulow S, Seeto R, Wong L, Mahony M & & Clulow J 2018b Successful sperm cryopreservation and generated offspring of the endangered frog, Litoria aurea. Cryobiology 85 148149. (https://doi.org/10.1016/j.cryobiol.2018.10.114)

    • Search Google Scholar
    • Export Citation
  • Wickham H 2016 ggplot2: Elegant Graphics for Data Analysis. New York: S pringer.

  • Woelders H, Matthijs A & & Engel B 1997 Effects of trehalose and sucrose, osmolality of the freezing medium, and cooling rate on viability and intactness of bull sperm after freezing and thawing. Cryobiology 35 93105. (https://doi.org/10.1006/cryo.1997.2028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yong KW, Laouar L, Elliott JAW & & Jomha NM 2020 Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology 96 111. (https://doi.org/10.1016/j.cryobiol.2020.08.012)

    • PubMed
    • Search Google Scholar
    • Export Citation