TEAD4 regulates KRT8 and YAP in preimplantation embryos in mice but not in cattle

in Reproduction
Authors:
Xiaotong Wu Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Xiaotong Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7669-6695
,
Yan Shi Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Yan Shi in
Current site
Google Scholar
PubMed
Close
,
Bingjie Hu Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Bingjie Hu in
Current site
Google Scholar
PubMed
Close
,
Panpan Zhao Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Panpan Zhao in
Current site
Google Scholar
PubMed
Close
,
Shuang Li Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Shuang Li in
Current site
Google Scholar
PubMed
Close
,
Lieying Xiao Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Lieying Xiao in
Current site
Google Scholar
PubMed
Close
,
Shaohua Wang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Shaohua Wang in
Current site
Google Scholar
PubMed
Close
, and
Kun Zhang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Kun Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2324-9381

Correspondence should be addressed to K Zhang; Email: kzhang@zju.edu.cn

*(X Wu and Y Shi contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Lineage specification plays a vital role in preimplantation development. TEAD4 is an essential transcription factor for trophectoderm lineage specification in mice but not in cattle.

Abstract

Tead4, a critical transcription factor expressed during preimplantation development, is essential for the expression of trophectoderm-specific genes in mice. However, the functional mechanism of TEAD4 in mouse preimplantation development and its conservation across mammals remain unclear. Here, we report that Tead4 is a crucial transcription factor necessary for blastocyst formation in mice. Disruption of Tead4 through base editing results in developmental arrest at the morula stage. Additionally, RNA-seq analysis reveals dysregulation of 670 genes in Tead4 knockout embryos. As anticipated, Tead4 knockout led to a decrease in trophectoderm genes Cdx2 and Gata3. Intriguingly, we observed a reduction in Krt8, suggesting that Tead4 influences the integrity of the trophectoderm epithelium in mice. More importantly, we noted a dramatic decrease in nuclear Yap in outside cells for Tead4-deficient morula, indicating that Tead4 directly regulates Hippo signaling. In contrast, bovine embryos with TEAD4 depletion could still develop to blastocysts with normal expression of CDX2, GATA3, and SOX2, albeit with a decrease in total cell number and ICM cell number. In conclusion, we propose that Tead4 regulates mouse blastocyst formation via Krt8 and Yap, both of which are critical regulators of mouse preimplantation development.

 

  • Collapse
  • Expand
  • Akizawa H, Kobayashi K, Bai H, Takahashi M, Kagawa S, Nagatomo H & & Kawahara M 2018 Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Reproduction 155 563571. (https://doi.org/10.1530/REP-18-0043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bolger AM, Lohse M & & Usadel B 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 21142120. (https://doi.org/10.1093/bioinformatics/btu170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S & & Knott JG 2015 Transcription factor AP-2gamma induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage. Development 142 16061615. (https://doi.org/10.1242/dev.120238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi I, Carey TS, Wilson CA & & Knott JG 2012 Transcription factor AP-2gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 139 46234632. (https://doi.org/10.1242/dev.086645)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D & & Knowles BB 2004 Maternal beta-catenin and E-cadherin in mouse development. Development 131 44354445. (https://doi.org/10.1242/dev.01316)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duranthon V, Watson AJ & & Lonergan P 2008 Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction 135 141150. (https://doi.org/10.1530/REP-07-0324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gerri C, Menchero S, Mahadevaiah SK, Turner JMA & & Niakan KK 2020 Human embryogenesis: a comparative perspective. Annual Review of Cell and Developmental Biology 36 411440. (https://doi.org/10.1146/annurev-cellbio-022020-024900)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Home P, Ray S, Dutta D, Bronshteyn I, Larson M & & Paul S 2009 GATA3 Is Selectively Expressed in the Trophectoderm of Peri-implantation Embryo and Directly Regulates Cdx2 Gene Expression. Journal of Biological Chemistry 284 2872928737. (https://doi.org/10.1074/jbc.M109.016840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang DW, Sherman BT & & Lempicki RA 2009a Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 37 113. (https://doi.org/10.1093/nar/gkn923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang DW, Sherman BT & & Lempicki RA 2009b Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nature Protocols 4 4457. (https://doi.org/10.1038/nprot.2008.211)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jedrusik A, Bruce AW, Tan MH, Leong DE, Skamagki M, Yao M & & Zernicka-Goetz M 2010 Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo. Developmental Biology 344 6678. (https://doi.org/10.1016/j.ydbio.2010.04.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaneko KJ & & DePamphilis ML 1998 Regulation of gene expression at the beginning of mammalian development and the TEAD family of transcription factors. Developmental Genetics 22 4355. (https://doi.org/10.1002/(SICI)1520-6408(1998)22:1<43::AID-DVG5>3.0.CO;2-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, Takeuchi K, Fujimori T, Nabeshima Y, Noda T, et al.2008 Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Molecular Biology of the Cell 19 24652475. (https://doi.org/10.1091/mbc.e07-12-1215)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim D, Langmead B & & Salzberg SL 2015 HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12 357360. (https://doi.org/10.1038/nmeth.3317)

  • Komor AC, Kim YB, Packer MS, Zuris JA & & Liu DR 2016 Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 420424. (https://doi.org/10.1038/nature17946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Komor AC, Badran AH & & Liu DR 2017 CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 169 559559. (https://doi.org/10.1016/j.cell.2017.04.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Larue L, Ohsugi M, Hirchenhain J & & Kemler R 1994 E-cadherin null mutant embryos fail to form a trophectoderm epithelium. PNAS 91 82638267. (https://doi.org/10.1073/pnas.91.17.8263)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao Y, Smyth GK & & Shi W 2014 featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 923930. (https://doi.org/10.1093/bioinformatics/btt656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lim HYG, Alvarez YD, Gasnier M, Wang Y, Tetlak P, Bissiere S, Wang H, Biro M & & Plachta N 2020 Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585 404409. (https://doi.org/10.1038/s41586-020-2647-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luo L, Shi Y, Wang H, Wang Z, Dang Y, Li S, Wang S & & Zhang K 2022 Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency. PLoS Genetics 18 e1010307. (https://doi.org/10.1371/journal.pgen.1010307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K & & Sasaki H 2008 Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mechanisms of Development 125 270283. (https://doi.org/10.1016/j.mod.2007.11.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, et al.2009 The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell 16 398410. (https://doi.org/10.1016/j.devcel.2009.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paulin D, Babinet C, Weber K & & Osborn M 1980 Antibodies as probes of cellular-differentiation and cytoskeletal organization in the mouse blastocyst. Experimental Cell Research 130 297304. (https://doi.org/10.1016/0014-4827(8090006-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM. & Zernicka-Goetz M 2005 Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. Journal of Cell Science 118 505515. (https://doi.org/10.1242/jcs.01666)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS & & Rossant J 2010 Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137 395403. (https://doi.org/10.1242/dev.038828)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riethmacher D, Brinkmann V & & Birchmeier C 1995 A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. PNAS 92 855859. (https://doi.org/10.1073/pnas.92.3.855)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sakurai N, Takahashi K, Emura N, Hashizume T & & Sawai K 2017 Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. Journal of Reproduction and Development 63 135142. (https://doi.org/10.1262/jrd.2016-130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwarz N, Windoffer R, Magin TM & & Leube RE 2015 Dissection of keratin network formation, turnover and reorganization in living murine embryos. Scientific Reports 5 9007. (https://doi.org/10.1038/srep09007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheth B, Nowak RL, Anderson R, Kwong WY, Papenbrock T & & Fleming TP 2008 Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Experimental Cell Research 314 33563368. (https://doi.org/10.1016/j.yexcr.2008.08.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi Y, Hu BJ, Wang ZZC, Wu XT, Luo L, Li S, Wang SH, Zhang K & & Wang HA 2023 Functional role of GATA3 and CDX2 in lineage specification during bovine early embryonic development. Reproduction 165 325333. (https://doi.org/10.1530/REP-22-0269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simmet K, Zakhartchenko V, Philippou-Massier J, Blum H, Klymiuk N & & Wolf E 2018 OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. PNAS 115 27702775. (https://doi.org/10.1073/pnas.1718833115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL & & Pachter L 2014 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 9 25132513. (https://doi.org/10.1038/nprot1014-2513a)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wirtz D 2009 Particle-tracking microrheology of living cells: principles and applications. Annual Review of Biophysics 38 301326. (https://doi.org/10.1146/annurev.biophys.050708.133724)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu GM, Gentile L, Fuchikami T, Sutter J, Psathaki K, Esteves TC, Arauzo-Bravo MJ, Ortmeier C, Verberk G, Abe K, et al.2010 Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development 137 41594169. (https://doi.org/10.1242/dev.056630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu J, Kausalya PJ, Phua DC, Ali SM, Hossain Z & & Hunziker W 2008 Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Molecular and Cellular Biology 28 16691678. (https://doi.org/10.1128/MCB.00891-07)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, Depamphilis ML & & Buonanno A 2007 Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134 38273836. (https://doi.org/10.1242/dev.010223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang B, Yang L & & Chen J 2019 Development and application of base Editors. CRISPR Journal 2 91104. (https://doi.org/10.1089/crispr.2019.0001)