Paternal protein provisioning to embryos during male seahorse pregnancy

in Reproduction
Authors:
Zoe M G Skalkos The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia

Search for other papers by Zoe M G Skalkos in
Current site
Google Scholar
PubMed
Close
,
James U Van Dyke La Trobe University, Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, Wodonga, VIC, Australia

Search for other papers by James U Van Dyke in
Current site
Google Scholar
PubMed
Close
,
Samson N Dowland The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia

Search for other papers by Samson N Dowland in
Current site
Google Scholar
PubMed
Close
, and
Camilla M Whittington The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia

Search for other papers by Camilla M Whittington in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5765-9699

Correspondence should be addressed to C Whittington; Email: camilla.whittington@sydney.edu.au
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Seahorses exhibit male pregnancy and are thus valuable comparative models for the study of the physiology and evolution of pregnancy. This study shows that protein is transported from fathers to developing embryos during gestation, and provides new knowledge about paternal contributions to embryonic development.

Abstract

Syngnathid embryos (seahorses, pipefishes and seadragons) develop on or in the male in a specialised brooding structure (brood pouch). Seahorse brood pouches supply nutrients, including lipids, to developing embryos (patrotrophy). We tested the hypothesis that proteins, vital for gene regulation and tissue growth during embryogenesis, are also transported from father to embryos, using the Australian pot-bellied seahorse, Hippocampus abdominalis. We used dry masses and total nitrogen content to estimate the total protein content of newly fertilised egg and neonate H. abdominalis. Neonates contained significantly greater protein mass than newly fertilised eggs. This result indicates that paternal protein transport to developing embryos occurs during H. abdominalis pregnancy. This study is the first to show paternal protein transport during pregnancy in seahorses, and furthers our understanding of paternal influence on embryonic development in male pregnant vertebrates.

 

  • Collapse
  • Expand
  • Álvarez JP, Blanco A, Silva C & & Planas M 2009 Proximate biochemical composition and enzymatic activities in eggs of farmed seahorse hippocampus guttulatus (Project hippocampus). Veracruz, Mexico: World Acquaculture Society.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benini E, Politis SN, Nielsen A, Sørensen SR, Tomkiewicz J & & Engrola S 2022 Type of hormonal treatment administered to induce vitellogenesis in European eel influences biochemical composition of eggs and yolk-sac larvae. Fish Physiology and Biochemistry 48 185200. (https://doi.org/10.1007/s10695-021-01042-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blackburn DG 1992 Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. American Zoologist 32 313321. (https://doi.org/10.1093/icb/32.2.313)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blackburn DG 2000 Classification of the reproductive patterns of Amniotes. Herpetological Monographs 14 371377. (https://doi.org/10.2307/1467051)

  • Blackburn DG 2015a Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. Journal of Morphology 276 961990. (https://doi.org/10.1002/jmor.20272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blackburn DG 2015b Viviparous placentotrophy in reptiles and the parent–offspring conflict. Journal of Experimental Zoology 324 532548. (https://doi.org/10.1002/jez.b.22624)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bobe J & & Labbé C 2010 Egg and sperm quality in fish. General and Comparative Endocrinology 165 535548. (https://doi.org/10.1016/j.ygcen.2009.02.011)

  • Brooks S, Tyler CR & & Sumpter JP 1997 Egg quality in fish: what makes a good egg? Reviews in Fish Biology and Fisheries 7 387416. (https://doi.org/10.1023/A:1018400130692)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buddle AL, Van Dyke JU, Thompson MB, Simpfendorfer CA & & Whittington CM 2019 Evolution of placentotrophy: using viviparous sharks as a model to understand vertebrate placental evolution. Marine and Freshwater Research 70 908. (https://doi.org/10.1071/MF18076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen SN, Regus JU, Reynoso Y, Mastro T & & Reznick DN 2015 Comparative life histories of fishes in the subgenus Limia (Pisces: Poeciliidae). Journal of Fish Biology 87 100114. (https://doi.org/10.1111/jfb.12695)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dudley JS, Hannaford P, Dowland SN, Lindsay LA, Thompson MB, Murphy CR, Van Dyke JU & & Whittington CM 2021 Structural changes to the brood pouch of male pregnant seahorses (Hippocampus abdominalis) facilitate exchange between father and embryos. Placenta 114 115123. (https://doi.org/10.1016/j.placenta.2021.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dulvy NK & & Reynolds JD 1997 Evolutionary transitions among egg–laying, live–bearing and maternal inputs in sharks and rays. Proceedings of the Royal Society of London 264 13091315. (https://doi.org/10.1098/rspb.1997.0181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finn RN, Henderson JR & & Fyhn HJ 1995 Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). II: lipid metabolism and enthalpy balance. Marine Biology 124 371379. (https://doi.org/10.1007/BF00363910)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finn RN, Fyhn HJ & & Fyhn HJ 2010 Requirement for amino acids in ontogeny of fish. Aquaculture Research 41 684716. (https://doi.org/10.1111/j.1365-2109.2009.02220.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foster SJ & & Vincent ACJ 2004 Life history and ecology of seahorses: implications for conservation and management. Journal of Fish Biology 65 161. (https://doi.org/10.1111/j.0022-1112.2004.00429.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frazer HA, Ellis M & & Huveneers C 2012 Can a threshold value be used to classify chondrichthyan reproductive modes: systematic review and validation using an oviparous species. PLoS One 7 e50196. (https://doi.org/10.1371/journal.pone.0050196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fricke R, Eschmeyer WN & & van der Laan R 2023 Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available at: https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (Accessed July 12th 2023).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilbert SF 2001 Developmental Biology. Sixth Edition. By Scott F. Gilbert. American Journal of Medical Genetics, 6 th ed. 99 170171. (https://doi.org/10.1002/1096-8628(2000)9999:999<00::AID-AJMG1133>3.0.CO;2-G)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gnaiger E & & Bitterlich G 1984 Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62 289298. (https://doi.org/10.1007/BF00384259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gómez-Requeni P, Kraemer MN & & Canosa LF 2012 Regulation of somatic growth and gene expression of the GH–IGF system and PRP-PACAP by dietary lipid level in early juveniles of a teleost fish, the pejerrey (Odontesthes bonariensis). Journal of Comparative Physiology 182 517530. (https://doi.org/10.1007/s00360-011-0640-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hachicho N, Reithel S, Miltner A, Heipieper HJ, Küster E & & Luckenbach T 2015 Body mass parameters, lipid profiles and protein contents of zebrafish embryos and effects of 2,4-dinitrophenol exposure. PLoS One 10 e0134755. (https://doi.org/10.1371/journal.pone.0134755)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamilton H, Saarman N, Short G, Sellas AB, Moore B, Hoang T, Grace CL, Gomon M, Crow K & & Brian Simison W 2017 Molecular phylogeny and patterns of diversification in syngnathid fishes. Molecular Phylogenetics and Evolution 107 388403. (https://doi.org/10.1016/j.ympev.2016.10.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haresign TW & & Shumway SE 1981 Permeability of the marsupium of the pipefish Syngnathus fuscus to [14C]-alpha amino isobutyric acid. Comparative Biochemistry and Physiology Part A 69 603604. (https://doi.org/10.1016/0300-9629(8193030-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He L, Long X, Qi J, Wang Z, Huang Z, Wu S, Zhang X, Luo H, Chen X, Lin J, et al.2022 Genome and gene evolution of seahorse species revealed by the chromosome-level genome of Hippocampus abdominalis. Molecular Ecology Resources 22 14651477. (https://doi.org/10.1111/1755-0998.13541)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heming TA & & Buddington RK 1988 Yolk absorption in embryonic and larval fishes. In Fish Physiology. Amsterdam: Elsevier Science & Technology, pp. 407446.

  • Hölttä-Vuori M, Salo VTV, Nyberg L, Brackmann C, Enejder A, Panula P & & Ikonen E 2010 Zebrafish: gaining popularity in lipid research. Biochemical Journal 429 235242. (https://doi.org/10.1042/BJ20100293)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang J, Amenyogbe E, Chen G & & Wang W 2021 Biochemical composition and activities of digestive and antioxidant enzymes during the egg and yolk-sac larval development of the cobia (Rachycentron canadum). Aquaculture Research 52 16431656. (https://doi.org/10.1111/are.15017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jung S, Rickert DA, Deak NA, Aldin ED, Recknor J, Johnson LA & & Murphy PA 2003 Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products. Journal of the American Oil Chemists' Society 80 11691173. (https://doi.org/10.1007/s11746-003-0837-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kamler E 1992 Early Life History of Fish: an Energetics Approach, 1 st ed. Dordrecht: Springer Science+Business Media, B.V.

  • Kamler E 2008 Resource allocation in yolk-feeding fish. Reviews in Fish Biology and Fisheries 18 143200. (https://doi.org/10.1007/s11160-007-9070-x)

  • Kowalska-Góralska M, Formicki K, Dobrzański Z, Wondołowska-Grabowska A, Skrzyńska E, Korzelecka-Orkisz A, Nędzarek A & & Tański A 2020 Nutritional composition of Salmonidae and Acipenseridae fish eggs. Annals of Animal Science 20 629645. (https://doi.org/10.2478/aoas-2019-0072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kvarnemo C, Mobley KB, Partridge C, Jones AG & & Ahnesjö I 2011 Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish Syngnathus typhle. Journal of Fish Biology 78 17251737. (https://doi.org/10.1111/j.1095-8649.2011.02989.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leary SL, Underwood W, Anthony R, Carter S, Grandin T, Greenacre C, Gwaltney-Brant S, McCrackin MA, Meyer R, Miller D, et al.2020 AVMA Guidelines for the Euthanasia of Animals. Schaumburg: American Veterinary Medical Association, pp. 8485.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liang H, Xu H, Ge X, Zhu J, Ren M & & Mi H 2022 Water temperature affecrts the protein requirements, growth performance and nutritional metabolism of grass carp (Ctenopharyngodon idella) juveniles. Aquaculture Reports 25. (https://doi.org/10.1016/j.aqrep.2022.101267)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linton JR & & Soloff BL 1964 The physiology of the brood pouch of the male sea horse Hippocampus erectus. Bulletin of Marine Science 14 4561.

  • Marsh-Matthews E & & Deaton R 2006 Resources and offspring provisioning: a test of the Trexler-DeAngelis model for matrotrophy evolution. Ecology 87 30143020. (https://doi.org/10.1890/0012-9658(200687[3014:raopat]2.0.co;2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marsh-Matthews E, Brooks M, Deaton R & & Tan H 2005 Effects of maternal and embryo characteristics on post-fertilization provisioning in fishes of the genus Gambusia. Oecologia 144 1224. (https://doi.org/10.1007/s00442-005-0030-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCoy EE, Jones AG & & Avise JC 2001 The genetic mating system and tests for cuckoldry in a pipefish species in which males fertilize eggs and brood offspring externally. Molecular Ecology 10 17931800. (https://doi.org/10.1046/j.0962-1083.2001.01320.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ofelio C, Díaz AO, Radaelli G & & Planas M 2018 Histological development of the long-snouted seahorse hippocampus guttulatus during ontogeny. Journal of Fish Biology 93 7287. (https://doi.org/10.1111/jfb.13668)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oroian TE, Cighi V, Oroian RG & & Gavrilǎ V 2013 Chemical composition of spawns and milt in Cyprinus carpio populations from Ariniş fishery complex, Maramureş area. Aquaculture, Aquarium, Conservation & Legislation 6 614617.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ostrovsky AN, Lidgard S, Gordon DP, Schwaha T, Genikhovich G & & Ereskovsky AV 2016 Matrotrophy and placentation in invertebrates: a new paradigm. Biological Reviews of the Cambridge Philosophical Society 91 673711. (https://doi.org/10.1111/brv.12189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Planas M, Olivotto I, González MJ, Laurà R, Angeletti C, Amici A & & Zarantoniello M 2021 Pre-breeding diets in the seahorse Hippocampus reidi: how do they affect fatty acid profiles, energetic status and histological features in newborn? Frontiers in Marine Science 8. (https://doi.org/10.3389/fmars.2021.688058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rayon T, Stamataki D, Perez-Carrasco R, Garcia-Perez L, Barrington C, Melchionda M, Exelby K, Lazaro J, Tybulewicz VLJ, Fisher EMC, et al.2020 Species-specific pace of development is associated with differences in protein stability. Science 369 eaba7667. (https://doi.org/10.1126/science.aba7667)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reading BJ, Andersen LK, Ryu Y-W, Mushirobira Y, Todo T & & Hiramatsu N 2018 Oogenesis and egg quality in finfish: yolk formation and other factors influencing female fertility. Fishes 3. (https://doi.org/10.3390/fishes3040045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ripley JL & & Foran CM 2009 Direct evidence for embryonic uptake of paternally-derived nutrients in two pipefishes (Syngnathidae: Syngnathus spp.). Journal of Comparative Physiology. Part B 179 325333. (https://doi.org/10.1007/s00360-008-0316-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rønnestad I & & Fyhn HJ 1993 Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Reviews in Fisheries Science 1 239259. (https://doi.org/10.1080/10641269309388544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosa R, Calado R, Andrade AM, Narciso L & & Nunes ML 2005 Changes in amino acids and lipids during embryogenesis of European lobster, Homarus gammarus (Crustacea: Decapoda). Comparative Biochemistry and Physiology 140 241249. (https://doi.org/10.1016/j.cbpc.2004.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Segade Á, Robaina L, Otero-Ferrer F, Garciá Romero J & & Molina Domínguez L 2015 Effects of the diet on seahorse (hippocampus hippocampus) growth, body colour, and biochemical composition. Aquaculture Nutrition 21 807813. (https://doi.org/10.1111/anu.12202)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skalkos ZMG, Van Dyke JU & & Whittington CM 2020 Paternal nutrient provisioning during male pregnancy in the seahorse Hippocampus abdominalis. Journal of Comparative Physiology 190 547556. (https://doi.org/10.1007/s00360-020-01289-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skalkos ZMG, Van Dyke JU & & Whittington CM 2023 Distinguishing between embryonic provisioning strategies in Teleost fishes using a threshold value for parentotrophy. Biomolecules 13 166180. (https://doi.org/10.3390/biom13010166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stiller J, Short G, Hamilton H, Saarman N, Longo S, Wainwright P, Rouse GW & & Simison WB 2022 Phylogenomic analysis of Syngnathidae reveals novel relationships, origins of endemic diversity and variable diversification rates. BMC Biology 20 7575. (https://doi.org/10.1186/s12915-022-01271-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stölting KN & & Wilson AB 2007 Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 29 884896. (https://doi.org/10.1002/bies.20626)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutton FB & & Wilson AB 2018 Parental behavior in fish. In Encyclopedia of Reproduction. Skinner MK, ed. Amsterdam: Elsevier Science & Technology.

  • Trexler JC 1997 Resource availability and plasticity in offspring provisioning: embryo nourishment in Sailfin mollies. Ecology 78 13701381. (https://doi.org/10.1890/0012-9658(1997078[1370:RAAPIO]2.0.CO;2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trexler JC & & DeAngelis DL 2003 Resource allocation in offspring provisioning: an evaluation of the conditions favoring the evolution of matrotrophy. American Naturalist 162 574585. (https://doi.org/10.1086/378822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Dyke JU & & Griffith OW 2018 Mechanisms of reproductive allocation as drivers of developmental plasticity in reptiles. Journal of Experimental Zoology 329 275286. (https://doi.org/10.1002/jez.2165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Dyke JU, Griffith OW & & Thompson MB 2014 High food abundance permits the evolution of placentotrophy: evidence from a placental lizard, Pseudemoia entrecasteauxii. American Naturalist 184 198210. (https://doi.org/10.1086/677138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wake MH 2015 Fetal adaptations for viviparity in amphibians. Journal of Morphology 276 941960. (https://doi.org/10.1002/jmor.20271)

  • Watanabe S, Kaneko T & & Watanabe Y 1999 Immunocytochemical detection of mitochondria-rich cells in the brood pouch epithelium of the pipefish, Syngnathus schlegeli: structural comparison with mitochondria-rich cells in the gills and larval epidermis. Cell and Tissue Research 295 141149. (https://doi.org/10.1007/s004410051220)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weltzien F-A, Planas M, Cunha I, Evjen MS & & Fyhn HJ 1999 Free amino acid and protein contents of start-feeding larvae of turbot (Scophthalmus maximus) at three temperatures. Marine Biology 133 327336. (https://doi.org/10.1007/s002270050471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittington CM, Musolf K, Sommer S & & Wilson AB 2013 Behavioural cues of reproductive status in seahorses Hippocampus abdominalis. Journal of Fish Biology 83 220226. (https://doi.org/10.1111/jfb.12156)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittington CM & & Friesen CR 2020 The evolution and physiology of male pregnancy in syngnathid fishes. Biological Reviews of the Cambridge Philosophical Society 95 12521272. (https://doi.org/10.1111/brv.12607)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittington CM, Griffith OW, Qi W, Thompson MB & & Wilson AB 2015 Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Molecular Biology and Evolution 32 31143131. (https://doi.org/10.1093/molbev/msv177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittington CM, Buddle AL, Griffith OW & & Carter AM 2022 Embryonic specializations for vertebrate placentation. Philosophical Transactions of the Royal Society of London Series B 377 20210261. (https://doi.org/10.1098/rstb.2021.0261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woods CMC 2000 Preliminary observations on breeding and rearing the seahorse Hippocampus abdominalis (Teleostei: Syngnathidae) in captivity. New Zealand Journal of Marine and Freshwater Research 34 475485. (https://doi.org/10.1080/00288330.2000.9516950)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wourms JP, Atz JW & & Stribling MD 1991 Viviparity and the maternal-embryonic relationship in the coelacanth Latimeria chalumnae. Environmental Biology of Fishes 32 225248. (https://doi.org/10.1007/BF00007456)

    • PubMed
    • Search Google Scholar
    • Export Citation