Inhibition of HSP90AA1 induces abnormalities in bovine oocyte maturation and embryonic development

in Reproduction
Authors:
Baobao Zhao College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Baobao Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5808-7300
,
Heqiang Li College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Heqiang Li in
Current site
Google Scholar
PubMed
Close
,
Han Zhang College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Han Zhang in
Current site
Google Scholar
PubMed
Close
,
Xinrui Lan College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Xinrui Lan in
Current site
Google Scholar
PubMed
Close
,
Xingchen Ren College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Xingchen Ren in
Current site
Google Scholar
PubMed
Close
,
Liangyi Zhang College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Liangyi Zhang in
Current site
Google Scholar
PubMed
Close
,
Huiming Ma Key Laboratory of Fertility Preservation and Maintenance (Ministry of Education), Ningxia Medical University, Yinchuan, Ningxia, China

Search for other papers by Huiming Ma in
Current site
Google Scholar
PubMed
Close
,
Yong Zhang College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Yong Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yongsheng Wang College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China

Search for other papers by Yongsheng Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8301-4031

Correspondence should be addressed to H Ma or Y Zhang or Y Wang; Email: mhm289@126.com or zhangyong1956@nwsuaf.edu.cn or wangyongsheng01@nwsuaf.edu.cn

*(B Zhao and H Li contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

HSP90AA1 is a ubiquitous molecular chaperone that can resist cellular stress, such as oxidative stress and apoptosis, and mediate the efficacy and protein folding of normal cells during heat stress, as well as many other functions. This study further reveals the role of HSP90AA1 in bovine oocyte maturation and early embryonic development.

Abstract

HSP90AA1, a highly abundant and ubiquitous molecular chaperone, plays important roles in various cellular processes including cell cycle control, cell survival, and hormone signaling pathways. In this study, we investigated the functions of HSP90AA1 in bovine oocyte and early embryo development. We found that HSP90AA1 was expressed at all stages of development, but was mainly located in the cytoplasm, with a small amount distributed in the nucleus. We then evaluated the effect of HSP90AA1 on the in vitro maturation of bovine oocytes using tanespimycin (17-AAG), a highly selective inhibitor of HSP90AA1. The results showed that inhibition of HSP90AA1 decreased nuclear and cytoplasmic maturation of oocytes, disrupted spindle assembly and chromosome distribution, significantly increased acetylation levels of α-tubulin in oocytes and affected epigenetic modifications (H3K27me3 and H3K27ac). In addition, H3K9me3 was increased at various stages during early embryo development. Finally, the impact of HSP90AA1 on early embryo development was explored. The results showed that inhibition of HSP90AA1 reduced the cleavage and blastocyst formation rates, while increasing the fragmentation rate and decreasing blastocyst quality. In conclusion, HSP90AA1 plays a crucial role in bovine oocyte maturation as well as early embryo development.

 

  • Collapse
  • Expand
  • Ahumada CJ, Salvador I, Cebrian-Serrano A, Lopera R & & Silvestre MA 2013 Effect of supplementation of different growth factors in embryo culture medium with a small number of bovine embryos on in vitro embryo development and quality. Animal 7 455462. (https://doi.org/10.1017/S1751731112001991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aligue R, Akhavan-Niak H & & Russell P 1994 A role for Hsp90 in cell cycle control: wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO Journal 13 60996106. (https://doi.org/10.1002/j.1460-2075.1994.tb06956.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Altieri DC 2013 Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis. Cellular and Molecular Life Sciences 70 24632472. (https://doi.org/10.1007/s00018-012-1177-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Altieri DC, Stein GS, Lian JB & & Languino LR 2012 TRAP-1, the mitochondrial Hsp90. Biochimica et Biophysica Acta 1823 767773. (https://doi.org/10.1016/j.bbamcr.2011.08.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • An Q, Peng W, Cheng C, Lu Z, Zhou C, Zhan Y & & Su J 2019 Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. Journal of Cellular Physiology 234 1737017381. (https://doi.org/10.1002/jcp.28357)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antczak M & & Van Blerkom J 1999 Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Human Reproduction 14 429447. (https://doi.org/10.1093/humrep/14.2.429)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ashraf S, Shah SM, Saini N, Dhanda S, Kumar A, Goud TS, Singh MK, Chauhan MS & & Upadhyay RC 2014 Developmental competence and expression pattern of bubaline (Bubalus bubalis) oocytes subjected to elevated temperatures during meiotic maturation in vitro. Journal of Assisted Reproduction and Genetics 31 13491360. (https://doi.org/10.1007/s10815-014-0275-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC & & Kouzarides T 2001 Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 120124. (https://doi.org/10.1038/35065138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al.2009 The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55 611622. (https://doi.org/10.1373/clinchem.2008.112797)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calo E & & Wysocka J 2013 Modification of enhancer chromatin: what, how, and why? Molecular Cell 49 825837. (https://doi.org/10.1016/j.molcel.2013.01.038)

  • Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, Marina DB, Garcia JF, Madhani HD, Cooke R, et al.2013 A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496 377381. (https://doi.org/10.1038/nature12032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheuquemán C, Loren P, Arias M, Risopatrón J, Felmer R, Álvarez J, Mogas T & & Sánchez R 2015 Effects of short-term exposure of mature oocytes to sodium nitroprusside on in vitro embryo production and gene expression in bovine. Theriogenology 84 14311437. (https://doi.org/10.1016/j.theriogenology.2015.07.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cho Y, Kim JY & & Kim N 2022 Comparative genomics and selection analysis of Yeonsan Ogye black chicken with whole-genome sequencing. Genomics 114 110298. (https://doi.org/10.1016/j.ygeno.2022.110298)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crea F 2012 Histone code, human growth and cancer. Oncotarget 3 12. (https://doi.org/10.18632/oncotarget.435)

  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, et al.2010 Histone H3K27ac separates active from poised enhancers and predicts developmental state. PNAS 107 2193121936. (https://doi.org/10.1073/pnas.1016071107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Csermely P, Schnaider T, Soti C, Prohászka Z & & Nardai G 1998 The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacology and Therapeutics 79 129168. (https://doi.org/10.1016/s0163-7258(9800013-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Driancourt MA, Guet P, Reynaud K, Chadli A & & Catelli MG 1999 Presence of an aromatase inhibitor, possibly heat shock protein 90, in dominant follicles of cattle. Journal of Reproduction and Fertility 115 4558. (https://doi.org/10.1530/jrf.0.1150045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • El-Sayed A, Nagy R, El-Asheeri AK & & Eid LN 2018 Developmental and molecular responses of buffalo (Bubalus bubalis) cumulus-oocyte complex matured in vitro under heat shock conditions. Zygote 26 177190. (https://doi.org/10.1017/S0967199418000072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eppig JJ & & Schroeder AC 1989 Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biology of Reproduction 41 268276. (https://doi.org/10.1095/biolreprod41.2.268)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A & & Surani MA 2003 Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130 42354248. (https://doi.org/10.1242/dev.00625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fabian D, Koppel J & & Maddox-Hyttel P 2005 Apoptotic processes during mammalian preimplantation development. Theriogenology 64 221231. (https://doi.org/10.1016/j.theriogenology.2004.11.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fisher DL, Mandart E & & Dorée M 2000 Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO Journal 19 15161524. (https://doi.org/10.1093/emboj/19.7.1516)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fouladi-Nashta AA, Alberio R, Kafi M, Nicholas B, Campbell KH & & Webb R 2005 Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reproductive Biomedicine Online 10 497502. (https://doi.org/10.1016/s1472-6483(1060827-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frank LA, Sutton-McDowall ML, Brown HM, Russell DL, Gilchrist RB & & Thompson JG 2014 Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Human Reproduction 29 12921303. (https://doi.org/10.1093/humrep/deu066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fukuda A, Osawa T, Oda H, Tanaka T, Toyokuni S & & Uchida K 1996 Oxidative stress response in iron-induced acute nephrotoxicity: enhanced expression of heat shock protein 90. Biochemical and Biophysical Research Communications 219 7681. (https://doi.org/10.1006/bbrc.1996.0184)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hales BF, Grenier L, Lalancette C & & Robaire B 2011 Epigenetic programming: from gametes to blastocyst. Birth Defects Research Part A, Clinical and Molecular Teratology 91 652665. (https://doi.org/10.1002/bdra.20781)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R & & Nakamura Y 2004 SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nature Cell Biology 6 731740. (https://doi.org/10.1038/ncb1151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardy K 1997 1997 cell death in the mammalian blastocyst. Molecular Human Reproduction 3 919925. (https://doi.org/10.1093/molehr/3.10.919)

  • Hardy K, Handyside AH & & Winston RM 1989 The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 107 597604. (https://doi.org/10.1242/dev.107.3.597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hartl FU & & Martin J 1995 Molecular chaperones in cellular protein folding. Current Opinion in Structural Biology 5 92102. (https://doi.org/10.1016/0959-440x(9580014-r)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang SY, Kuo YH, Lee WC, Tsou HL, Lee YP, Chang HL, Wu JJ & & Yang PC 1999 Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology 51 10071016. (https://doi.org/10.1016/s0093-691x(9900046-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue T, Hirata K, Kuwana Y, Fujita M, Miwa J, Roy R & & Yamaguchi Y 2006 2006 cell cycle control by daf-21/Hsp90 at the first meiotic prophase/metaphase boundary during oogenesis in Caenorhabditis elegans. Development, Growth and Differentiation 48 2532. (https://doi.org/10.1111/j.1440-169X.2006.00841.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ipenberg I, Guttmann-Raviv N, Khoury HP, Kupershmit I & & Ayoub N 2013 Heat shock protein 90 (Hsp90) selectively regulates the stability of KDM4B/JMJD2B histone demethylase. Journal of Biological Chemistry 288 1468114687. (https://doi.org/10.1074/jbc.C113.462770)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwasaki S, Yoshiba N, Ushijima H, Watanabe S & & Nakahara T 1990 Morphology and proportion of inner cell mass of bovine blastocysts fertilized in vitro and in vivo. Journal of Reproduction and Fertility 90 279284. (https://doi.org/10.1530/jrf.0.0900279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jakobsen BK & & Pelham HR 1988 Constitutive binding of yeast heat shock factor to DNA in vivo. Molecular and Cellular Biology 8 50405042. (https://doi.org/10.1128/mcb.8.11.5040-5042.1988)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ju S, Rui R, Lu Q, Lin P & & Guo H 2010 Analysis of apoptosis and methyltransferase mRNA expression in porcine cloned embryos cultured in vitro. Journal of Assisted Reproduction and Genetics 27 4959. (https://doi.org/10.1007/s10815-009-9378-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang YK, Lee KK & & Han YM 2003 Reprogramming DNA methylation in the preimplantation stage: peeping with Dolly's eyes. Current Opinion in Cell Biology 15 290295. (https://doi.org/10.1016/s0955-0674(0300031-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kijima T, Prince TL, Tigue ML, Yim KH, Schwartz H, Beebe K, Lee S, Budzynski MA, Williams H, Trepel JB, et al.2018 HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Scientific Reports 8 6976. (https://doi.org/10.1038/s41598-018-25404-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knijn HM, Gjørret JO, Vos PL, Hendriksen PJ, van der Weijden BC, Maddox-Hyttel P & & Dieleman SJ 2003 Consequences of in vivo development and subsequent culture on apoptosis, cell number, and blastocyst formation in bovine embryos. Biology of Reproduction 69 13711378. (https://doi.org/10.1095/biolreprod.103.017251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koo DB, Kang YK, Choi YH, Park JS, Kim HN, Oh KB, Son DS, Park H, Lee KK & & Han YM 2002 Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biology of Reproduction 67 487492. (https://doi.org/10.1095/biolreprod67.2.487)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB & & Yao TP 2005 HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular Cell 18 601607. (https://doi.org/10.1016/j.molcel.2005.04.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H & & Yahara I 1986 Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. PNAS 83 80548058. (https://doi.org/10.1073/pnas.83.21.8054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krtková J, Zimmermann A, Schwarzerová K & & Nick P 2012 Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. Journal of Plant Physiology 169 13291339. (https://doi.org/10.1016/j.jplph.2012.06.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar A, Ashraf S, Goud TS, Grewal A, Singh SV, Yadav BR & & Upadhyay RC 2015 Expression profiling of major heat shock protein genes during different seasons in cattle (Bos indicus) and buffalo (Bubalus bubalis) under tropical climatic condition. Journal of Thermal Biology 51 5564. (https://doi.org/10.1016/j.jtherbio.2015.03.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lachner M, O'Carroll D, Rea S, Mechtler K & & Jenuwein T 2001 Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410 116120. (https://doi.org/10.1038/35065132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR & & Cowen LE 2010 PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLOS Pathogens 6 e1001069. (https://doi.org/10.1371/journal.ppat.1001069)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langer T, Rosmus S & & Fasold H 2003 Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biology International 27 4752. (https://doi.org/10.1016/s1065-6995(0200256-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latorraca LB, Feitosa WB, Mariano C, Moura MT, Fontes PK, Nogueira MFG & & Paula-Lopes FF 2020 Autophagy is a pro-survival adaptive response to heat shock in bovine cumulus-oocyte complexes. Scientific Reports 10 13711. (https://doi.org/10.1038/s41598-020-69939-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J & & Buchner J 2013 Structure, function and regulation of the hsp90 machinery. Biomedical Journal 36 106117. (https://doi.org/10.4103/2319-4170.113230)

  • Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ & & Yang CX 2018 Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. Journal of Animal Science 96 33583369. (https://doi.org/10.1093/jas/sky213)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maselli J, Hales BF & & Robaire B 2014 Paternal exposure to testis cancer chemotherapeutics alters sperm fertilizing capacity and affects gene expression in the eight-cell stage rat embryo. Andrology 2 259266. (https://doi.org/10.1111/j.2047-2927.2014.00185.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mayer MP & & Le Breton L 2015 Hsp90: breaking the symmetry. Molecular Cell 58 820. (https://doi.org/10.1016/j.molcel.2015.02.022)

  • Metchat A, Akerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H & & Christians ES 2009 Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression. Journal of Biological Chemistry 284 95219528. (https://doi.org/10.1074/jbc.M808819200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Myung SJ, Yoon JH, Kim BH, Lee JH, Jung EU & & Lee HS 2009 Heat shock protein 90 inhibitor induces apoptosis and attenuates activation of hepatic stellate cells. Journal of Pharmacology and Experimental Therapeutics 330 276282. (https://doi.org/10.1124/jpet.109.151860)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pan Y, Cui Y, Baloch AR, Fan J, He J, Zhang Y, Zheng H, Li G & & Yu S 2015 Association of heat shock protein 90 with the developmental competence of immature oocytes following Cryotop and solid surface vitrification in yaks (Bos grunniens) Cryobiology 71 3339. (https://doi.org/10.1016/j.cryobiol.2015.06.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON, et al.2010 Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Research 38 49584969. (https://doi.org/10.1093/nar/gkq244)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pöhland R, Souza-Cácares MB, Datta TK, Vanselow J, Martins M, da Silva W, Cardoso CJT & & Melo-Sterza FA 2020 Influence of long-term thermal stress on the in vitro maturation on embryo development and Heat Shock Protein abundance in zebu cattle. Animal Reproduction 17 e20190085. (https://doi.org/10.1590/1984-3143-AR2019-0085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poleshko A & & Katz RA 2014 Specifying peripheral heterochromatin during nuclear lamina reassembly. Nucleus 5 3239. (https://doi.org/10.4161/nucl.28167)

  • Pomar FJ, Teerds KJ, Kidson A, Colenbrander B, Tharasanit T, Aguilar B & & Roelen BA 2005 Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63 22542268. (https://doi.org/10.1016/j.theriogenology.2004.10.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Powers MV, Clarke PA & & Workman P 2008 Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14 250262. (https://doi.org/10.1016/j.ccr.2008.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prodromou C 2016 Mechanisms of Hsp90 regulation. Biochemical Journal 473 24392452. (https://doi.org/10.1042/BCJ20160005)

  • Ron D & & Walter P 2007 Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology 8 519529. (https://doi.org/10.1038/nrm2199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruden DM & & Lu X 2008 Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Current Genomics 9 500508. (https://doi.org/10.2174/138920208786241207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sarge KD, Murphy SP & & Morimoto RI 1993 Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Molecular and Cellular Biology 13 13921407. (https://doi.org/10.1128/mcb.13.3.1392-1407.1993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schultz RM 2002 The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update 8 323331. (https://doi.org/10.1093/humupd/8.4.323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shinozuka J, Li G, Kiatipattanasakul W, Uetsuka K, Nakayama H & & Doi K 1997 T-2 toxin-induced apoptosis in lymphoid organs of mice. Experimental and Toxicologic Pathology 49 387392. (https://doi.org/10.1016/S0940-2993(9780124-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sidera K, Samiotaki M, Yfanti E, Panayotou G & & Patsavoudi E 2004 Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. Journal of Biological Chemistry 279 4537945388. (https://doi.org/10.1074/jbc.M405486200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sima S & & Richter K 2018 Regulation of the Hsp90 system. Biochimica et Biophysica Acta Molecular Cell Research 1865 889897. (https://doi.org/10.1016/j.bbamcr.2018.03.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Snigireva AV, Vrublevskaya VV, Skarga YY & & Morenkov OS 2016 The role of membrane-bound heat shock proteins Hsp90 in migration of tumor cells in vitro and involvement of cell surface heparan sulfate proteoglycans in protein binding to plasma membrane. Biofizika 61 328336.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Solís EJ, Pandey JP, Zheng X, Jin DX, Gupta PB, Airoldi EM, Pincus D & & Denic V 2016 Defining the essential function of yeast Hsf1 reveals a compact transcriptional program for maintaining eukaryotic proteostasis. Molecular Cell 63 6071. (https://doi.org/10.1016/j.molcel.2016.05.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Souza ED, Silva ESJFD, Oliveira Netto PM, Carvalheira LR, Batista RITP, Quintão CCR, Louro ID & & Camargo LSA 2022 Inhibition of Hsp90 during in vitro maturation under thermoneutral or heat shock conditions compromises the developmental competence of bovine oocytes. Zygote 30 854862. (https://doi.org/10.1017/S0967199422000387)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sreedhar AS, Kalmár E, Csermely P & & Shen YF 2004 Hsp90 isoforms: functions, expression and clinical importance. FEBS Letters 562 1115. (https://doi.org/10.1016/s0014-5793(0400229-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU & & Pavletich NP 1997 Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89 239250. (https://doi.org/10.1016/s0092-8674(0080203-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steer CV, Mills CL, Tan SL, Campbell S & & Edwards RG 1992 The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Human Reproduction 7 117119. (https://doi.org/10.1093/oxfordjournals.humrep.a137542)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stensen MH, Tanbo TG, Storeng R, Åbyholm T & & Fedorcsak P 2015 Fragmentation of human cleavage-stage embryos is related to the progression through meiotic and mitotic cell cycles. Fertility and Sterility 103 37481.e4. (https://doi.org/10.1016/j.fertnstert.2014.10.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tariq M, Nussbaumer U, Chen Y, Beisel C & & Paro R 2009 Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. PNAS 106 11571162. (https://doi.org/10.1073/pnas.0809669106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Theodoraki MA & & Caplan AJ 2012 Quality control and fate determination of Hsp90 client proteins. Biochimica et Biophysica Acta 1823 683688. (https://doi.org/10.1016/j.bbamcr.2011.08.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Voellmy R & & Boellmann F 2007 Chaperone regulation of the heat shock protein response. Advances in Experimental Medicine and Biology 594 8999. (https://doi.org/10.1007/978-0-387-39975-1_9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang P, Shu Z, He L, Cui X, Wang Y & & Gao D 2005 The pertinence of expression of heat shock proteins (HSPs) to the efficacy of cryopreservation in HELAs. Cryo Letters 26 716.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X, Song X, Zhuo W, Fu Y, Shi H, Liang Y, Tong M, Chang G & & Luo Y 2009 The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. PNAS 106 2128821293. (https://doi.org/10.1073/pnas.0908151106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang M, Gao Y, Qu P, Qing S, Qiao F, Zhang Y, Mager J & & Wang Y 2017 Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Scientific Reports 7 13403. (https://doi.org/10.1038/s41598-017-13899-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang M, Du Y, Gao S, Wang Z, Qu P, Gao Y, Wang J, Liu Z, Zhang J, Zhang Y, et al.2021 Sperm-borne miR-202 targets Sept7 and regulates first cleavage of bovine embryos via cytoskeletal remodeling. Development 148. (https://doi.org/10.1242/dev.189670)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weis F, Moullintraffort L, Heichette C, Chrétien D & & Garnier C 2010 The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. Journal of Biological Chemistry 285 95259534. (https://doi.org/10.1074/jbc.M109.096586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Y, Zuo Z, Wang Z, Liu H, Zhou Q, Ren S, Lan X, Zhang Y & & Wang Y 2023 bta-miR-183 targets EZRIN to regulate microvilli formation and improve early development of bovine embryos. Reproduction 165 363371. (https://doi.org/10.1530/REP-22-0361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yue L, Karr TL, Nathan DF, Swift H, Srinivasan S & & Lindquist S 1999 Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics 151 10651079. (https://doi.org/10.1093/genetics/151.3.1065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Qu P, Zhou C, Liu X, Ma X, Wang M, Wang Y, Su J, Liu J & & Zhang Y 2017a MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. Journal of Biological Chemistry 292 1591615926. (https://doi.org/10.1074/jbc.M117.796771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Wang QC, Liu J, Xiong B, Cui XS, Kim NH & & Sun SC 2017b The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. Journal of Reproduction and Development 63 505510. (https://doi.org/10.1262/jrd.2017-034)

    • PubMed
    • Search Google Scholar
    • Export Citation