MEK signalling pathway is required for hypoblast specification and migration in ovine

in Reproduction
Authors:
Nuria Martínez de los Reyes Department of Animal Reproduction, INIA, CSIC, Madrid, Spain

Search for other papers by Nuria Martínez de los Reyes in
Current site
Google Scholar
PubMed
Close
,
Inés Flores-Borobia Department of Animal Reproduction, INIA, CSIC, Madrid, Spain

Search for other papers by Inés Flores-Borobia in
Current site
Google Scholar
PubMed
Close
,
Melissa Carvajal-Serna Department of Animal Reproduction, INIA, CSIC, Madrid, Spain

Search for other papers by Melissa Carvajal-Serna in
Current site
Google Scholar
PubMed
Close
,
Pilar Marigorta Department of Animal Reproduction, INIA, CSIC, Madrid, Spain

Search for other papers by Pilar Marigorta in
Current site
Google Scholar
PubMed
Close
,
Pablo Bermejo-Álvarez Department of Animal Reproduction, INIA, CSIC, Madrid, Spain

Search for other papers by Pablo Bermejo-Álvarez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9907-2626
, and
Priscila Ramos-Ibeas Department of Animal Reproduction, INIA, CSIC, Madrid, Spain

Search for other papers by Priscila Ramos-Ibeas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4578-0189

Correspondence should be addressed to P Ramos-Ibeas; Email: ramos.priscila@inia.csic.es
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

MEK signalling pathway is required for hypoblast differentiation in mouse embryos, but its role in ungulate embryos remains controversial. This paper demonstrates that MEK is required for hypoblast specification in the inner cell mass of the ovine blastocyst and that it plays a role during the hypoblast migration occurring following blastocyst hatching.

Abstract

Early embryo development requires the differentiation of three cell lineages in two differentiation events. The second lineage specification differentiates the inner cell mass into epiblast, which will form the proper fetus, and hypoblast, which together with the trophectoderm will form the extraembryonic membranes and the fetal part of the placenta. MEK signalling pathway is required for hypoblast differentiation in mouse embryos, but its role in ungulate embryos remains controversial. The aim of this work was to analyse the role of MEK signalling on hypoblast specification at the blastocyst stage and on hypoblast migration during post-hatching stages in vitro in the ovine species. Using well-characterized and reliable lineage markers, and different MEK inhibitor concentrations, we demonstrate that MEK signalling pathway is required for hypoblast specification in the inner cell mass of the ovine blastocyst, and that it plays a role during the hypoblast migration occurring following blastocyst hatching. These results show that the role of MEK signalling pathway on hypoblast specification is conserved in phylogenetically distant mammals.

 

  • Collapse
  • Expand
  • Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR & & Cohen P 2007 The selectivity of protein kinase inhibitors: a further update. Biochemical Journal 408 297315. (https://doi.org/10.1042/BJ20070797)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, Lepage S, Leopold WR, et al.2008 The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorganic and Medicinal Chemistry Letters 18 65016504. (https://doi.org/10.1016/j.bmcl.2008.10.054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M & & Pfeffer PL 2011 Trophectoderm lineage determination in cattle. Developmental Cell 20 244255. (https://doi.org/10.1016/j.devcel.2011.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bessonnard S, de Mot L, Gonze D, Barriol M, Dennis C, Goldbeter A, Dupont G & & Chazaud C 2014 Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141 36373648. (https://doi.org/10.1242/dev.109678)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bou G, Liu S, Sun M, Zhu J, Xue B, Guo J, Zhao Y, Qu B, Weng X, Wei Y, et al.2017 CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development 144 12961306. (https://doi.org/10.1242/dev.141085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Canizo JR, Ynsaurralde Rivolta AE, Vazquez Echegaray C, Suvá M, Alberio V, Aller JF, Guberman AS, Salamone DF, Alberio RH & & Alberio R 2019 A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC Developmental Biology 19 13. (https://doi.org/10.1186/s12861-019-0193-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cauffman G, van de Velde H, Liebaers I & & van Steirteghem A 2005 Oct-4 mRNA and protein expression during human preimplantation development. Molecular Human Reproduction 11 173181. (https://doi.org/10.1093/molehr/gah155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galiano-Cogolludo B, Marigorta P, Yus Girón V, Bermejo-Álvarez P & & Ramos-Ibeas P 2023 Transforming growth factor beta (TGFβ) pathway is essential for hypoblast and epiblast development in ovine post-hatching embryos. Theriogenology 196 112120. (https://doi.org/10.1016/j.theriogenology.2022.11.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gerri C, McCarthy A, Alanis-Lobato G, Demtschenko A, Bruneau A, Loubersac S, Fogarty NME, Hampshire D, Elder K, Snell P, et al.2020 Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587 443447. (https://doi.org/10.1038/s41586-020-2759-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goissis MD & & Cibelli JB 2014a Functional characterization of CDX2 during bovine preimplantation development in vitro. Molecular Reproduction and Development 81 962970. (https://doi.org/10.1002/mrd.22415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goissis MD & & Cibelli JB 2014b Functional characterization of SOX2 in bovine preimplantation embryos. Biology of Reproduction 90 30. (https://doi.org/10.1095/biolreprod.113.111526)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harris D, Huang B & & Oback B 2013 Inhibition of MAP2K and GSK3 signaling promotes bovine blastocyst development and epiblast-associated expression of pluripotency factors. Biology of Reproduction 88 74. (https://doi.org/10.1095/biolreprod.112.103390)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia GX, Ma WJ, Wu ZB, Li S, Zhang XQ, He Z, Wu SX, Tao HP, Fang Y, Song YW, et al.2023 Single-cell transcriptomic characterization of sheep conceptus elongation and implantation. Cell Reports 42 112860. (https://doi.org/10.1016/j.celrep.2023.112860)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H & & Niemann H 2000 Expression pattern of Oct-4 in preimplantation embryos of different species. Biology of Reproduction 63 16981705. (https://doi.org/10.1095/biolreprod63.6.1698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuijk EW, Du Puy L, van Tol HT, Oei CH, Haagsman HP, Colenbrander B & & Roelen BA 2008 Differences in early lineage segregation between mammals. Developmental Dynamics 237 918927. (https://doi.org/10.1002/dvdy.21480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuijk EW, van Tol LT, van de Velde H, Wubbolts R, Welling M, Geijsen N & & Roelen BA 2012 The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139 871882. (https://doi.org/10.1242/dev.071688)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luo L, Shi Y, Wang H, Wang Z, Dang Y, Li S, Wang S & & Zhang K 2022 Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency. PLoS Genetics 18 e1010307. (https://doi.org/10.1371/journal.pgen.1010307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, et al.2007 Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta 1773 12631284. (https://doi.org/10.1016/j.bbamcr.2006.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McLean Z, Meng F, Henderson H, Turner P & & Oback B 2014 Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts. Biology of Reproduction 91 49. (https://doi.org/10.1095/biolreprod.114.120832)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Molè MA, Coorens THH, Shahbazi MN, Weberling A, Weatherbee BAT, Gantner CW, Sancho-Serra C, Richardson L, Drinkwater A, Syed N, et al.2021 A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nature Communications 12 3679. (https://doi.org/10.1038/s41467-021-23758-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nichols J, Silva J, Roode M & & Smith A 2009 Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136 32153222. (https://doi.org/10.1242/dev.038893)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R & & Rossant J 2005 Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123 917929. (https://doi.org/10.1016/j.cell.2005.08.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez-Gomez A, Gonzalez-Brusi L, Bermejo-Alvarez P & & Ramos-Ibeas P 2021 Lineage differentiation markers as a proxy for embryo viability in farm ungulates. Frontiers in Veterinary Science 8 680539. (https://doi.org/10.3389/fvets.2021.680539)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P, Nichols J & & Alberio R 2018 States and origins of mammalian embryonic pluripotency in vivo and in a dish. Current Topics in Developmental Biology 128 151179. (https://doi.org/10.1016/bs.ctdb.2017.11.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S, Klisch D, Wood L, Loose M, Surani MA & & Alberio R 2019 Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications 10 500. (https://doi.org/10.1038/s41467-019-08387-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P, Lamas-Toranzo I, Martínez-Moro Á, de Frutos C, Quiroga AC, Zurita E & & Bermejo-Alvarez P 2020 Embryonic disc formation following post-hatching bovine embryo development in vitro. Reproduction 160 579589. (https://doi.org/10.1530/REP-20-0243)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P, González-Brusi L, Used MT, Cocero MJ, Marigorta P, Alberio R & & Bermejo-Álvarez P 2022 In vitro culture of ovine embryos up to early gastrulating stages. Development 149. (https://doi.org/10.1242/dev.199743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P, Pérez-Gómez A, González-Brusi L, Quiroga AC & & Bermejo-Álvarez P 2023 Pre-hatching exposure to N2B27 medium improves post-hatching development of bovine embryos in vitro. Theriogenology 205 7378. (https://doi.org/10.1016/j.theriogenology.2023.04.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodriguez A, Allegrucci C & & Alberio R 2012 Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7 e49079. (https://doi.org/10.1371/journal.pone.0049079)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roode M, Blair K, Snell P, Elder K, Marchant S, Smith A & & Nichols J 2012 Human hypoblast formation is not dependent on FGF signalling. Developmental Biology 361 358363. (https://doi.org/10.1016/j.ydbio.2011.10.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al.2012 Fiji: an open-source platform for biological-image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shaul YD & & Seger R 2007 The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et Biophysica Acta 1773 12131226. (https://doi.org/10.1016/j.bbamcr.2006.10.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Springer C, Zakhartchenko V, Wolf E & & Simmet K 2021 Hypoblast formation in bovine embryos does not depend on NANOG. Cells 10 2232. (https://doi.org/10.3390/cells10092232)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei Q, Zhong L, Zhang S, Mu H, Xiang J, Yue L, Dai Y & & Han J 2017 Bovine lineage specification revealed by single-cell gene expression analysis from zygote to blastocyst. Biology of Reproduction 97 517. (https://doi.org/10.1093/biolre/iox071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamanaka Y, Lanner F & & Rossant J 2010 FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137 715724. (https://doi.org/10.1242/dev.043471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang W & & Liu HT 2002 MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research 12 918. (https://doi.org/10.1038/sj.cr.7290105)

    • PubMed
    • Search Google Scholar
    • Export Citation