A maternal ketogenic diet alters oviduct fluid nutrients and embryo histone acetylation in mice

in Reproduction
Authors:
Emma G Whatley University of Melbourne (School of BioSciences), Parkville, Victoria, Australia
Melbourne IVF, East Melbourne, Victoria, Australia

Search for other papers by Emma G Whatley in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9544-7806
,
Alexandra J Harvey University of Melbourne (School of BioSciences), Parkville, Victoria, Australia
Melbourne IVF, East Melbourne, Victoria, Australia

Search for other papers by Alexandra J Harvey in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6696-0950
, and
David K Gardner University of Melbourne (School of BioSciences), Parkville, Victoria, Australia
Melbourne IVF, East Melbourne, Victoria, Australia

Search for other papers by David K Gardner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3138-8274

Correspondence should be addressed to D K Gardner; Email: david.gardner@unimelb.edu.au
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

A ketogenic diet (KD) elevates blood β-hydroxybutyrate to concentrations that are known to perturb the development, metabolism, histone acetylation and viability of preimplantation mouse embryos in culture. This study shows that a maternal KD changes available nutrient levels in the oviduct, leading to altered embryo development and epigenetic state in vivo.

Abstract

A ketogenic diet elevates blood β-hydroxybutyrate to concentrations that perturb the development, metabolism, histone acetylation (H3K27ac) and viability of preimplantation mouse embryos in vitro. However, whether a ketogenic diet alters β-hydroxybutyrate concentrations within female reproductive fluid is unknown. This study aimed to quantify glucose and β-hydroxybutyrate within mouse blood and oviduct fluid following standard diet and ketogenic diet consumption and to assess whether a maternal periconceptional ketogenic diet impacts in vivo embryo development and blastocyst H3K27ac. Female C57BL/6 × CBA mice were fed a standard or ketogenic diet (n = 24 each) for 24–27 days. Glucose and β-hydroxybutyrate were quantified in blood via an electronic monitoring system and in oviduct fluid via ultramicrofluorescence. The developmental grade of flushed blastocysts was recorded, and blastocyst cell number and H3K27ac were assessed via immunofluorescence. A maternal ketogenic diet elevated β-hydroxybutyrate in day 24 blood (P < 0.001) and oviduct fluid (P < 0.05) compared with a standard diet, whereas glucose was unchanged. A periconceptional ketogenic diet did not impact blastocyst cell number; however, it significantly delayed blastocyst development (P < 0.05) and reduced trophectoderm-specific H3K27ac (P < 0.05) compared with standard diet-derived embryos. Maternal ketogenic diet consumption is, therefore, associated with reproductive tract nutrient changes and altered embryonic development and epigenetics in vivo. Future studies to assess whether periconceptional/gestational ketogenic diet consumption impacts human preimplantation, fetal, and long-term offspring development and health are warranted.

 

  • Collapse
  • Expand
  • Alwahab UA, Pantalone KM & & Burguera B 2018 A ketogenic diet may restore fertility in women with polycystic ovary syndrome: a case series. AACE Clinical Case Reports 4 e427e431. (https://doi.org/10.4158/ACCR-2018-0026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Binder NK, Hannan NJ & & Gardner DK 2012a Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7 e52304. (https://doi.org/10.1371/journal.pone.0052304)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Binder NK, Mitchell M & & Gardner DK 2012 bParental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst. Reproduction, Fertility, and Development 24 804812. (https://doi.org/10.1071/RD11256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boden G, Sargrad K, Homko C, Mozzoli M & & Stein TP 2005 Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Annals of Internal Medicine 142 403411. (https://doi.org/10.7326/0003-4819-142-6-200503150-00006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Budak Ö, Bostancı MS, Kurtoğlu E & & Toprak V 2021 Decreased ovarian reserve and ovarian morphological alterations in female rat offspring exposed to a ketogenic maternal diet. Revista da Associação Médica Brasileira 67 14151420. (https://doi.org/10.1590/1806-9282.20210518)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J & McLure SW et al.2016 Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metabolism 24 256268. (https://doi.org/10.1016/j.cmet.2016.07.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dabke P & & Das AM 2020 Mechanism of action of ketogenic diet treatment: impact of decanoic acid and beta—hydroxybutyrate on sirtuins and energy metabolism in hippocampal murine neurons. Nutrients 12 2379. (https://doi.org/10.3390/nu12082379)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eckert JJ, Porter R, Watkins AJ, Burt E, Brooks S, Leese HJ, Humpherson PG, Cameron IT & & Fleming TP 2012 Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS One 7 e52791. (https://doi.org/10.1371/journal.pone.0052791)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Endo R, Ishii A, Nakanishi A, Nabenishi H, Ashizawa K & & Tsuzuki Y 2010 Effect of the addition of β-hydroxybutyrate to chemically defined maturation medium on the nuclear maturation, sperm penetration and embryonic development of porcine oocytes in vitro. Asian-Australasian Journal of Animal Sciences 23 14211426. (https://doi.org/10.5713/ajas.2010.10073)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finger BJ, Harvey AJ, Green MP & & Gardner DK 2015 Combined parental obesity negatively impacts preimplantation mouse embryo development, kinetics, morphology and metabolism. Human Reproduction 30 20842096. (https://doi.org/10.1093/humrep/dev142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garber AJ, Menzel PH, Boden G & & Owen OE 1974 Hepatic ketogenesis and gluconeogenesis in humans. Journal of Clinical Investigation 54 981989. (https://doi.org/10.1172/JCI107839)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner DK & & Leese HJ 1990 Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. Journal of Reproduction and Fertility 88 361368. (https://doi.org/10.1530/jrf.0.0880361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner DK, Lane M, Calderon I & & Leeton J 1996 Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertility and Sterility 65 349353. (https://doi.org/10.1016/s0015-0282(1658097-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner DK 2007 Noninvasive metabolic assessment of single cells. Methods in Molecular Medicine 132 19. (https://doi.org/10.1007/978-1-59745-298-4_1)

  • Gardner DK & & Truong TT 2019 Culture of the mouse preimplantation embryo. Methods in Molecular Biology 2006 1332. (https://doi.org/10.1007/978-1-4939-9566-0_2)

  • Grimbert S, Fromenty B, Fisch C, Letteron P, Berson A, Durand-Schneider AM, Feldmann G & & Pessayre D 1993 Decreased mitochondrial oxidation of fatty acids in pregnant mice: possible relevance to development of acute fatty liver of pregnancy. Hepatology 17 628637. (https://doi.org/10.1002/hep.1840170417)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupta L, Khandelwal D, Kalra S, Gupta P, Dutta D & & Aggarwal S 2017 Ketogenic diet in endocrine disorders: current perspectives. Journal of Postgraduate Medicine 63 242251. (https://doi.org/10.4103/jpgm.JPGM_16_17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Halestrap AP 2013 Monocarboxylic acid transport. Comprehensive Physiology 3 16111643. (https://doi.org/10.1002/cphy.c130008)

  • Harris SE, Gopichandran N, Picton HM, Leese HJ & & Orsi NM 2005 Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 64 9921006. (https://doi.org/10.1016/j.theriogenology.2005.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harvey AJ, Kind KL, Pantaleon M, Armstrong DT & & Thompson JG 2004 Oxygen-regulated gene expression in bovine blastocysts1. Biology of Reproduction 71 11081119. (https://doi.org/10.1095/biolreprod.104.028639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J & & Bergersen LH 2019 A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis. Neurochemical Research 44 2237. (https://doi.org/10.1007/s11064-018-2588-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hunter ES, Sadler TW & & Wynn RE 1987 A potential mechanism of DL-beta-hydroxybutyrate-induced malformations in mouse embryos. American Journal of Physiology 253 E72E80. (https://doi.org/10.1152/ajpendo.1987.253.1.E72)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kermack AJ, Finn-Sell S, Cheong YC, Brook N, Eckert JJ, Macklon NS & & Houghton FD 2015 Amino acid composition of human uterine fluid: association with age, lifestyle and gynaecological pathology. Human Reproduction 30 917924. (https://doi.org/10.1093/humrep/dev008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim YJ & & Felig P 1972 Maternal and amniotic fluid substrate levels during caloric deprivation in human pregnancy. Metabolism: Clinical and Experimental 21 507512. (https://doi.org/10.1016/0026-0495(7290094-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kosiek W, Rauk Z, Szulc P, Cichy A, Rugieł M, Chwiej J, Janeczko K & & Setkowicz Z 2022 Ketogenic diet impairs neurological development of neonatal rats and affects biochemical composition of maternal brains: evidence of functional recovery in pups. Brain Structure and Function 227 10991113. (https://doi.org/10.1007/s00429-021-02450-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuchiiwa T, Nio-Kobayashi J, Takahashi-Iwanaga H, Yajima T & & Iwanaga T 2011 Cellular expression of monocarboxylate transporters in the female reproductive organ of mice: implications for the genital lactate shuttle. Histochemistry and Cell Biology 135 351360. (https://doi.org/10.1007/s00418-011-0794-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laffel L 1999 Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metabolism Research and Reviews 15 412426. (https://doi.org/10.1002/(sici)1520-7560(199911/12)15:6<412::aid-dmrr72>3.0.co;2-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leese HJ 1988 The formation and function of oviduct fluid. Journal of Reproduction and Fertility 82 843856. (https://doi.org/10.1530/jrf.0.0820843)

  • Leese HJ & & Gray SM 1985 Vascular perfusion: a novel means of studying oviduct function. American Journal of Physiology 248 E624E632. (https://doi.org/10.1152/ajpendo.1985.248.5.E624)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leese HJ, Hugentobler SA, Gray SM, Morris DG, Sturmey RG, Whitear SL & & Sreenan JM 2008 Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reproduction, Fertility, and Development 20 18. (https://doi.org/10.1071/rd07153)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lemieux G, Aranda MR, Fournel P & & Lemieux C 1984 Renal enzymes during experimental diabetes mellitus in the rat. Role of insulin, carbohydrate metabolism, and ketoacidosis. Canadian Journal of Physiology and Pharmacology 62 7075. (https://doi.org/10.1139/y84-010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu S, Yao Q, Li X, Wu H, Sun C, Bai W & & Kang J 2023 Effects of a ketogenic diet on reproductive and metabolic phenotypes in mice with polycystic ovary syndrome. Biology of Reproduction 108 597610. (https://doi.org/10.1093/biolre/ioad004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mavropoulos JC, Yancy WS, Hepburn J & & Westman EC 2005 The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutrition and Metabolism 2 35. (https://doi.org/10.1186/1743-7075-2-35)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McGrice M & & Porter J 2017 The effect of low carbohydrate diets on fertility hormones and outcomes in overweight and obese women: a systematic review. Nutrients 9 204. (https://doi.org/10.3390/nu9030204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mitchell M, Bakos HW & & Lane M 2011 Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertility and Sterility 95 13491353. (https://doi.org/10.1016/j.fertnstert.2010.09.038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mroz EA & & Lechene C 1980 Fluorescence analysis of picoliter samples. Analytical Biochemistry 102 9096. (https://doi.org/10.1016/0003-2697(8090322-x)

  • Newman JC & & Verdin E 2017 β-hydroxybutyrate: a signaling metabolite. Annual Review of Nutrition 37 5176. (https://doi.org/10.1146/annurev-nutr-071816-064916)

  • Paauw ND, Lely AT, Joles JA, Franx A, Nikkels PG, Mokry M & & van Rijn BB 2018 H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction. Clinical Epigenetics 10 85. (https://doi.org/10.1186/s13148-018-0508-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paoli A, Mancin L, Giacona MC, Bianco A & & Caprio M 2020 Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. Journal of Translational Medicine 18 104. (https://doi.org/10.1186/s12967-020-02277-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel MS & & Owen OE 1977 Development and regulation of lipid synthesis from ketone bodies by rat brain. Journal of Neurochemistry 28 109114. (https://doi.org/10.1111/j.1471-4159.1977.tb07715.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Randle PJ, Newsholme EA & & Garland PB 1964 Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochemical Journal 93 652665. (https://doi.org/10.1042/bj0930652)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reichard GA Jr, Haff AC, Skutches CL, Paul P, Holroyde CP & & Owen OE 1979 Plasma acetone metabolism in the fasting human. Journal of Clinical Investigation 63 619626. (https://doi.org/10.1172/JCI109344)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rhee JS, Saben JL, Mayer AL, Schulte MB, Asghar Z, Stephens C, Chi MM-Y & & Moley KH 2016 Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Human Reproduction 31 13151326. (https://doi.org/10.1093/humrep/dew048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruderman NB, Ross PS, Berger M & & Goodman MN 1974 Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochemical Journal 138 110. (https://doi.org/10.1042/bj1380001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sangalli JR, Sampaio RV, Del Collado M, da Silveira JC, De Bem THC, Perecin F, Smith LC & & Meirelles FV 2018 Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Scientific Reports 8 13766. (https://doi.org/10.1038/s41598-018-31822-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Senior AE & & Sherratt HS 1969 A comparison of the effects on blood glucose and ketone-body levels, and of the toxicities, of pent-4-enoic acid and four simple fatty acids. Journal of Pharmacy and Pharmacology 21 8592. (https://doi.org/10.1111/j.2042-7158.1969.tb08202.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sussman D, Ellegood J & & Henkelman M 2013a A gestational ketogenic diet alters maternal metabolic status as well as offspring physiological growth and brain structure in the neonatal mouse. BMC Pregnancy and Childbirth 13 198. (https://doi.org/10.1186/1471-2393-13-198)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sussman D, van Eede M, Wong MD, Adamson SL & & Henkelman M 2013b Effects of a ketogenic diet during pregnancy on embryonic growth in the mouse. BMC Pregnancy and Childbirth 13 109. (https://doi.org/10.1186/1471-2393-13-109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sussman D, Germann J & & Henkelman M 2015 Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring. Brain and Behavior 5 e00300. (https://doi.org/10.1002/brb3.300)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tamura I, Jozaki K, Sato S, Shirafuta Y, Shinagawa M, Maekawa R, Taketani T, Asada H, Tamura H & & Sugino N 2018 The distal upstream region of insulin-like growth factor–binding protein-1 enhances its expression in endometrial stromal cells during decidualization. Journal of Biological Chemistry 293 52705280. (https://doi.org/10.1074/jbc.RA117.000234)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanda N, Hinokio Y, Washio J, Takahashi N & & Koseki T 2014 Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph. Journal of Breath Research 8 046008. (https://doi.org/10.1088/1752-7155/8/4/046008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thio LL, Erbayat-Altay E, Rensing N & & Yamada KA 2006 Leptin contributes to slower weight gain in juvenile rodents on a ketogenic diet. Pediatric Research 60 413417. (https://doi.org/10.1203/01.pdr.0000238244.54610.27)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tripathi SK, Farman M, Nandi S, Kumar VG & & Gupta PSP 2016 Oviductal and uterine fluid analytes as biomarkers of metabolic stress in ewes (Ovis aries). Small Ruminant Research 144 225228. (https://doi.org/10.1016/j.smallrumres.2016.09.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Villarroya F & & Mampel T 1985 Glucose tolerance and insulin response in offspring of ethanol-treated pregnant rats. General Pharmacology 16 415417. (https://doi.org/10.1016/0306-3623(8590208-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walker KJ, Green MP & & Gardner DK 2015 Spatial asynchronous transfer of cleavage-stage mouse embryos to the uterus compromises fetal development. Molecular Reproduction and Development 82 80. (https://doi.org/10.1002/mrd.22456)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whatley EG, Truong TT, Wilhelm D, Harvey AJ & & Gardner DK 2022 β-hydroxybutyrate reduces blastocyst viability via trophectoderm-mediated metabolic aberrations in mice. Human Reproduction 37 19942011. (https://doi.org/10.1093/humrep/deac153)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whatley EG, Truong TT, Harvey AJ & & Gardner DK 2023a Acetoacetate and β-hydroxybutyrate reduce mouse embryo viability via differential metabolic and epigenetic mechanisms. Reproductive Biomedicine Online 46 2033. (https://doi.org/10.1016/j.rbmo.2022.09.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whatley EG, Truong TT, Harvey AJ & & Gardner DK 2023b Preimplantation exposure to ketone bodies exerts sex-specific effects on mouse fetal and placental transcriptomes. Reproductive Biomedicine Online 47 103320. (https://doi.org/10.1016/j.rbmo.2023.103320)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White H, Venkatesh B, Jones M & & Fuentes H 2017 Serial changes in plasma ketone concentrations in patients with acute brain injury. Neurological Research 39 16. (https://doi.org/10.1080/01616412.2016.1251695)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G & Chen Y et al.2016 Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Molecular Cell 62 194206. (https://doi.org/10.1016/j.molcel.2016.03.036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yin J, Nielsen M, Carcione T, Li S & & Shi J 2019 Apolipoprotein E regulates mitochondrial function through the PGC-1α-sirtuin 3 pathway. Aging (Albany NY) 11 1114811156. (https://doi.org/10.18632/aging.102516)

    • PubMed
    • Search Google Scholar
    • Export Citation