NSUN5 is essential for proper cell proliferation and differentiation of mouse preimplantation embryos

in Reproduction
Authors:
Dan Liu Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Dan Liu in
Current site
Google Scholar
PubMed
Close
,
Takuto Yamamoto Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Takuto Yamamoto in
Current site
Google Scholar
PubMed
Close
,
Haoxue Wang Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Haoxue Wang in
Current site
Google Scholar
PubMed
Close
,
Naojiro Minami Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Naojiro Minami in
Current site
Google Scholar
PubMed
Close
,
Shinnosuke Honda Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Shinnosuke Honda in
Current site
Google Scholar
PubMed
Close
, and
Shuntaro Ikeda Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Shuntaro Ikeda in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4939-2135

Correspondence should be addressed to S Ikeda; Email: ikeda.syuntaro.6u@kyoto-u.ac.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Proper early embryonic development in mammals relies on precise cellular signaling pathways. This study reveals that NSUN5 is crucial for the regulation of the Hippo pathway, ensuring normal proliferation and differentiation in mouse preimplantation embryos.

Abstract

NOL1/NOP2/Sun domain family, member 5 (NSUN5) is an enzyme belonging to the 5-methylcytosine (m5C) writer family that modifies rRNA and mRNA. Our data revealed an upregulation of Nsun5 at the two-cell stage of mouse preimplantation development, suggesting its significance in early embryonic development. Given m5C’s important role in stabilizing rRNA and mRNA and the Hippo signaling pathway’s critical function in lineage segregation during embryogenesis, we hypothesized that NSUN5 controls cell differentiation by regulating the expression of components of the Hippo signaling pathway in mouse early embryos. To examine this hypothesis, we employed Nsun5-specific small interfering RNAs for targeted gene silencing in mouse preimplantation embryos. Nsun5 knockdown resulted in significant developmental impairments including reduced blastocyst formation, smaller size of blastocysts, and impaired hatching from the zona pellucida. Nsun5 knockdown also led to decreased cell numbers and increased apoptosis in embryos. We also observed diminished nuclear translocation of yes-associated protein 1 (YAP1) in Nsun5 knockdown embryos at the morula stage, indicating disrupted cell differentiation. This disruption was further evidenced by an altered ratio of CDX2-positive to OCT4-positive cells. Furthermore, Nsun5 depletion was found to upregulate the Hippo signaling-related key genes, Lats1 and Lats2 at the morula stage. Our findings underscore the essential role of Nsun5 in early embryonic development by affecting cell proliferation, YAP1 nuclear translocation, and the Hippo pathway.

 

  • Collapse
  • Expand
  • Batista MR, Diniz P, Torres A, Murta D, Lopes-da-Costa L & & Silva E 2020 Notch signaling in mouse blastocyst development and hatching. BMC Developmental Biology 20 9. (https://doi.org/10.1186/s12861-020-00216-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boopathy GTK & & Hong WJ 2019 Role of hippo pathway-YAP/TAZ signaling in angiogenesis. Frontiers in Cell and Developmental Biology 7 49. (https://doi.org/10.3389/fcell.2019.00049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bothos J, Tuttle RL, Ottey M, Luca FC & & Halazonetis TDJCr 2005 Human LATS1 is a mitotic exit network kinase. Cancer Research 65 65686575. (https://doi.org/10.1158/0008-5472.CAN-05-0862)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen P, Zhang T, Yuan Z, Shen B & & Chen LJMB 2019 Expression of the RNA methyltransferase Nsun5 is essential for developing cerebral cortex. Molecular Brain 12 74. (https://doi.org/10.1186/s13041-019-0496-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ding C, Lu J, Li J, Hu X, Liu Z, Su H, Li H & & Huang B 2022 RNA-methyltransferase Nsun5 controls the maternal-to-zygotic transition by regulating maternal mRNA stability. Clinical and Translational Medicine 12 e1137. (https://doi.org/10.1002/ctm2.1137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & & Gingeras TRJB 2013 STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 1521. (https://doi.org/10.1093/bioinformatics/bts635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fleming TP 1992 Trophectoderm biogenesis in the preimplantation mouse embryo. In Epithelial Organization and Development, edn 1, pp. 111112. EdsFleming TP. Dordrecht: Springer. (https://doi.org/10.1007/978-94-011-2354-9_4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao Y & & Fang J 2021 RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark. RNA Biology 18 117127.

  • Genevet A & & Tapon N 2011 The Hippo pathway and apico-basal cell polarity. Biochemical Journal 436 213224. )https://doi.org/10.1042/BJ20110217)

  • Guo C, Wang X & & Liang L 2015 LATS2-mediated YAP1 phosphorylation is involved in HCC tumorigenesis. International Journal of Clinical and Experimental Pathology 8 16901697.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirate Y, Hirahara S, Inoue KI, Kiyonari H, Niwa H & & Sasaki HJD 2015 Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Development, Growth and Differentiation 57 544556. (https://doi.org/10.1111/dgd.12235)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ho Y, Wigglesworth K, Eppig JJ & & Schultz RM 1995 Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Molecular Reproduction and Development 41 232238. (https://doi.org/10.1002/mrd.1080410214)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang J, Wu S, Barrera J, Matthews K & & Pan DJC 2005 The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122 421434. (https://doi.org/10.1016/j.cell.2005.06.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang Z, Li S, Han MJ, Hu GM & & Cheng P 2020 High expression of NSUN5 promotes cell proliferation via cell cycle regulation in colorectal cancer. American Journal of Translational Research 12 38583870.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, Li W, Zou J, Meng L, Azhar M, et al.2023 Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nature Communications 14 3729. (https://doi.org/10.1038/s41467-023-39256-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karasek C, Ashry M, Driscoll CS & & Knott JGJ 2020 A tale of two cell-fates: role of the Hippo signaling pathway and transcription factors in early lineage formation in mouse preimplantation embryos. Molecular Human Reproduction 26 653664. (https://doi.org/10.1093/molehr/gaaa052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li B & & Dewey CNJ 2011 RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12 323. (https://doi.org/10.1186/1471-2105-12-323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li C, Wang S, Xing Z, Lin A, Liang K, Song J, Hu Q, Yao J, Chen Z, Park PK, et al.2017 A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nature Cell Biology 19 106119. (https://doi.org/10.1038/ncb3464)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li L, Li M, Zheng J, Li Z & & Chen X 2023 Knocking down NSUN5 inhibits the development of clear cell renal cell carcinoma by inhibiting the p53 pathway. Aging (Albany NY) 15 47574773. (https://doi.org/10.18632/aging.204761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu C, Cheng X, Chen J, Wang Y, Wu X, Tian R, Liu B, Ding X, Sun Q & & Gong W 2019 Suppression of YAP/TAZ-Notch1-NICD axis by bromodomain and extraterminal protein inhibition impairs liver regeneration. Theranostics 9 38403852. (https://doi.org/10.7150/thno.33370)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marikawa Y & & Alarcon VBJR 2012 Creation of trophectoderm, the first epithelium, in mouse preimplantation development. Results and Problems in Cell Differentiation 55 165184. (https://doi.org/10.1007/978-3-642-30406-4_9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mihajlović AI & & Bruce AW 2016 Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reproductive Biomedicine Online 33 381390. (https://doi.org/10.1016/j.rbmo.2016.06.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Minami N, Sasaki K, Aizawa A, Miyamoto M & & Imai H 2001 Analysis of gene expression in mouse 2-cell embryos using fluorescein differential display: comparison of culture environments. Biology of Reproduction 64 3035. (https://doi.org/10.1095/biolreprod64.1.30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, Akatsuka S, Toyokuni S, Yokoi K, Osada H, et al.2012 YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene 31 51175122. (https://doi.org/10.1038/onc.2012.5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishio M, Hamada K, Kawahara K, Sasaki M, Noguchi F, Chiba S, Mizuno K, Suzuki SO, Dong Y, Tokuda M, et al.2012 Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. Journal of Clinical Investigation 122 45054518. (https://doi.org/10.1172/JCI63735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishioka N, Inoue K-i, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, et al.2009 The hippo signaling pathway components lats and yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell 16 398410. )https://doi.org/10.1016/j.devcel.2009.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qiao K, Liu Y, Xu Z, Zhang H, Zhang H, Zhang C, Chang Z, Lu X, Li Z, Luo C, et al.2021 RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis 24 8396. (https://doi.org/10.1007/s10456-020-09744-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS & & Rossant J 2010 Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137 395403. (https://doi.org/10.1242/dev.038828)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Cañon S, Sasaki H, Hadjantonakis A-K, de la Pompa JL, et al.2014 Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Developmental Cell 30 410422. (https://doi.org/10.1016/j.devcel.2014.06.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodríguez A, Diez C, Ikeda S, Royo LJ, Caamaño JN, Alonso-Montes C, Goyache F, Álvarez I, Facal N & & Gomez EJHR 2006 Retinoids during the in vitro transition from bovine morula to blastocyst. Human Reproduction 21 21492157. (https://doi.org/10.1093/humrep/del099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roundtree IA, Evans ME, Pan T & & He C 2017 Dynamic RNA modifications in gene expression regulation. Cell 169 11871200. (https://doi.org/10.1016/j.cell.2017.05.045)

  • Shikata D, Yamamoto T, Honda S, Ikeda S & & Minami N 2020 H4K20 monomethylation inhibition causes loss of genomic integrity in mouse preimplantation embryos. Journal of Reproduction and Development 66 411419. (https://doi.org/10.1262/jrd.2020-036) H4K20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song H, Zhang J, Liu B, Xu J, Cai B, Yang H, Straube J, Yu X & & Ma T 2022 Biological roles of RNA m5C modification and its implications in Cancer immunotherapy. Biomarker Research 10 15. (https://doi.org/10.1186/s40364-022-00362-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sui X, Hu Y, Ren C, Cao Q, Zhou S, Cao Y-D, Li M, Shu W & & Huo RJCC 2020 METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle 19 391404. (https://doi.org/10.1080/15384101.2019.1711324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K, Esteves TC, Araúzo-Bravo MJ, Ortmeier C, Verberk G, Abe K, et al.2010 Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development 137 41594169. (https://doi.org/10.1242/dev.056630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, Sun BF, Li A, Xia J, Chen J, et al.2019 RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Molecular Cell 75 1188-1202.e1111. (https://doi.org/10.1016/j.molcel.2019.06.033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yildirim E, Bora G, Onel T, Talas N & & Yaba A 2021 2021 cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell and Tissue Research 386 423444. (https://doi.org/10.1007/s00441-021-03530-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ & & Camargo FD 2014 Hippo pathway activity influences liver cell fate. Cell 157 13241338. (https://doi.org/10.1016/j.cell.2014.03.060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu W, Zhang C, Wang Y, Tian X, Miao Y, Meng F, Ma L, Zhang X & & Xia J 2023 YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma. Cancer Gene Therapy 30 149162. (https://doi.org/10.1038/s41417-022-00533-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zeng Q & & Hong W 2008 The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13 188192. (https://doi.org/10.1016/j.ccr.2008.02.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, et al.2016 Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537 553557. (https://doi.org/10.1038/nature19361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhuang Q, Li F, Liu J, Wang H, Tian Y, Zhang Z, Wang F, Zhao Z, Chen J & & Wu HJLI 2021 Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in Adriamycin-induced focal segmental glomerulosclerosis. Laboratory Investigation; a Journal of Technical Methods and Pathology 101 258270. (https://doi.org/10.1038/s41374-020-00503-3)

    • PubMed
    • Search Google Scholar
    • Export Citation