The effects of the activation of TLR2/TLR1 on in vitro angiogenesis in an immortalized ovine luteal endothelial cell line

in Reproduction
Authors:
Duygu Yaman Gram Department of Physiology, Faculty of Veterinary Medicine, Erciyes University, Turkey

Search for other papers by Duygu Yaman Gram in
Current site
Google Scholar
PubMed
Close
,
Murat Abay Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Turkey

Search for other papers by Murat Abay in
Current site
Google Scholar
PubMed
Close
,
Narin Liman Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Turkey

Search for other papers by Narin Liman in
Current site
Google Scholar
PubMed
Close
,
Muhittin Tekin Clinical Unit for Herd Health Management in Ruminants, Center for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Austria

Search for other papers by Muhittin Tekin in
Current site
Google Scholar
PubMed
Close
,
Mariusz P Kowalewski Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland

Search for other papers by Mariusz P Kowalewski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4565-7714
, and
Aykut Gram Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Turkey

Search for other papers by Aykut Gram in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7490-5836

Correspondence should be addressed to A Gram: aykutgram@erciyes.edu.tr
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Activation of TLR2/TLR1 alters in vitro formation of capillary-like structures and induces inflammatory processes in ovine luteal endothelial (OLENDO) cells.

Abstract

Postpartum bacterial infections of the uterus affect uterine physiology and ovarian activity, causing fertility problems. The outer membrane component of Gram-negative bacteria, lipopolysaccharide, is involved in the initiation of the local inflammatory processes, and other bacterial toxins, particularly lipopeptides, have also been shown to be potent cytokine inducers, acting via Toll-like receptor-2 (TLR2). However, the possible adverse effects of TLR2 on ovarian and luteal activities have not yet been investigated in depth. The strong expression of TLR2 in the blood vessels of the corpus luteum led us to hypothesize that TLR2 activation might participate in the disruption of luteal vascular functionality. Therefore, we analyzed the effects of Pam3CSK4 (Pam3CysSerLys4), a synthetic triacylated lipopeptide and TLR2/TLR1 ligand, on the functionality of gap junctional intercellular communication (GJIC), endothelial cell invasion, and in vitro capillary-like network formation in an immortalized ovine luteal endothelial (OLENDO) cell line. Pam3CSK4 treatment of OLENDO cells disrupted in vitro tube formation but had no effect on GJIC or migration of OLENDO cells. Furthermore, Pam3CSK4 induced the expression of NFKB, IL6, and IL8 in OLENDO cells. Additionally, the basal availability of TLRs (TLR1–10) and TLR co-receptors (MYD88, LY96/MD2, and CD14) in OLENDO cells was confirmed by conventional PCR. Finally, the activation of TLR2/TLR1 appears to alter in vitro formation of capillary-like structures and induce inflammatory processes in OLENDO cells.

 

  • Collapse
  • Expand
  • Armant MA & & Fenton MJ 2002 Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biology 3 REVIEWS3011. (https://doi.org/10.1186/gb-2002-3-8-reviews3011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Atli MO, Kose M, Hitit M, Kaya MS & & Bozkaya F 2018 Expression patterns of toll-like receptors in the ovine corpus luteum during the early pregnancy and prostaglandin F2alpha-induced luteolysis. Theriogenology 111 2533. (https://doi.org/10.1016/j.theriogenology.2018.01.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Battaglia DF, Bowen JM, Krasa HB, Thrun LA, Viguie C & & Karsch FJ 1997 Endotoxin inhibits the reproductive neuroendocrine axis while stimulating adrenal steroids: a simultaneous view from hypophyseal portal and peripheral blood. Endocrinology 138 42734281. (https://doi.org/10.1210/endo.138.10.5449)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bedir Ö, Gram A, Dorsam ST, Grazul-Bilska AT & & Kowalewski MP 2022 Plane of nutrition and FSH-induced superovulation affect the expression of steroid hormone receptors and growth factors in caruncular tissue of non-pregnant sheep. Domestic Animal Endocrinology 78 106683. (https://doi.org/10.1016/j.domaniend.2021.106683)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bedir Ö, Gram A, Grazul-Bilska AT & & Kowalewski MP 2023 The effects of follicle stimulating hormone (FSH)-induced controlled ovarian hyperstimulation and nutrition on implantation-related gene expression in caruncular tissues of non-pregnant sheep. Theriogenology 195 229237. (https://doi.org/10.1016/j.theriogenology.2022.10.033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beutler B 2004 Inferences, questions and possibilities in toll-like receptor signalling. Nature 430 257263. (https://doi.org/10.1038/nature02761)

  • Brandt KJ, Fickentscher C, Kruithof EKO & & de Moerloose P 2013 TLR2 ligands induce NF-kappaB activation from endosomal compartments of human monocytes. PLoS One 8 e80743. (https://doi.org/10.1371/journal.pone.0080743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield JJ & & Sheldon IM 2011 Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology 152 50295040. (https://doi.org/10.1210/en.2011-1124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carpentier G, Berndt S, Ferratge S, Rasband W, Cuendet M, Uzan G & & Albanese P 2020 Angiogenesis Analyzer for ImageJ - A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “fibrin Bead Assay”. Scientific Reports 10 11568. (https://doi.org/10.1038/s41598-020-67289-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, et al.1996 Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87 11611169. (https://doi.org/10.1016/s0092-8674(0081812-7).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dziarski R, Wang Q, Miyake K, Kirschning CJ & & Gupta D 2001 MD-2 enables toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. Journal of Immunology 166 19381944. (https://doi.org/10.4049/jimmunol.166.3.1938)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W & & Landmann R 2002 Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. Journal of Infectious Diseases 186 798806. (https://doi.org/10.1086/342845)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AAB, Cooper MA, Graf T & & Hornung V 2016 Human monocytes engage an alternative inflammasome pathway. Immunity 44 833846. (https://doi.org/10.1016/j.immuni.2016.01.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garcia-Crespo D, Juste RA & & Hurtado A 2005 Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Veterinary Research 1 3. (https://doi.org/10.1186/1746-6148-1-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilbert RO, Shin ST, Guard CL, Erb HN & & Frajblat M 2005 Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 64 18791888. (https://doi.org/10.1016/j.theriogenology.2005.04.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gioannini TL & & Weiss JP 2007 Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunologic Research 39 249260. (https://doi.org/10.1007/s12026-007-0069-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gram A & & Kowalewski MP 2022 Molecular mechanisms of lipopolysaccharide (LPS) induced inflammation in an immortalized ovine luteal endothelial cell line (OLENDO). Veterinary Sciences 9. (https://doi.org/10.3390/vetsci9030099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gram A, Grazul-Bilska AT, Boos A, Rahman NA & & Kowalewski MP 2019 Lipopolysaccharide disrupts gap junctional intercellular communication in an immortalized ovine luteal endothelial cell line. Toxicology in Vitro 60 437449. (https://doi.org/10.1016/j.tiv.2019.05.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanahan D 1997 Signaling vascular morphogenesis and maintenance. Science 277 4850. (https://doi.org/10.1126/science.277.5322.48)

  • Haziak K, Herman AP, Wojtulewicz K, Pawlina B, Paczesna K, Bochenek J & & Tomaszewska-Zaremba D 2018 Effect of CD14/TLR4 antagonist on GnRH/LH secretion in ewe during central inflammation induced by intracerebroventricular administration of LPS. Journal of Animal Science and Biotechnology 9 52. (https://doi.org/10.1186/s40104-018-0267-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE & & Sheldon IM 2007 Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134 683693. (https://doi.org/10.1530/REP-07-0229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herzog K, Struve K, Kastelic JP, Piechotta M, Ulbrich SE, Pfarrer C, Shirasuna K, Shimizu T, Miyamoto A & & Bollwein H 2012 Escherichia coli lipopolysaccharide administration transiently suppresses luteal structure and function in diestrous cows. Reproduction 144 467476. (https://doi.org/10.1530/REP-12-0138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim LA, Kramer JM, Williams RS & & Bromfield JJ 2016 Human granulosa-luteal cells initiate an innate immune response to pathogen-associated molecules. Reproduction 152 261270. (https://doi.org/10.1530/REP-15-0573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawasaki T & & Kawai T 2014 Toll-like receptor signaling pathways. Frontiers in Immunology 5 461. (https://doi.org/10.3389/fimmu.2014.00461)

  • Lavon Y, Leitner G, Klipper E, Moallem U, Meidan R & & Wolfenson D 2011 Subclinical, chronic intramammary infection lowers steroid concentrations and gene expression in bovine preovulatory follicles. Domestic Animal Endocrinology 40 98109. (https://doi.org/10.1016/j.domaniend.2010.09.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lorenz E, Mira JP, Cornish KL, Arbour NC & & Schwartz DA 2000 A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infection and Immunity 68 63986401. (https://doi.org/10.1128/IAI.68.11.6398-6401.2000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luttgenau J, Moller B, Kradolfer D, Wellnitz O, Bruckmaier RM, Miyamoto A, Ulbrich SE & & Bollwein H 2016a Lipopolysaccharide enhances apoptosis of corpus luteum in isolated perfused bovine ovaries in vitro. Reproduction 151 1728. (https://doi.org/10.1530/REP-15-0281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luttgenau J, Herzog K, Struve K, Latter S, Boos A, Bruckmaier RM, Bollwein H & & Kowalewski MP 2016b LPS-mediated effects and spatio-temporal expression of TLR2 and TLR4 in the bovine corpus luteum. Reproduction 151 391399. (https://doi.org/10.1530/REP-15-0520)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magata F, Horiuchi M, Miyamoto A & & Shimizu T 2014 Lipopolysaccharide (LPS) inhibits steroid production in theca cells of bovine follicles in vitro: distinct effect of LPS on theca cell function in pre- and post-selection follicles. Journal of Reproduction and Development 60 280287. (https://doi.org/10.1262/jrd.2013-124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magata F, Ishida Y, Miyamoto A, Furuoka H, Inokuma H & & Shimizu T 2015 Comparison of bacterial endotoxin lipopolysaccharide concentrations in the blood, ovarian follicular fluid and uterine fluid: a clinical case of bovine metritis. Journal of Veterinary Medical Science 77 8184. (https://doi.org/10.1292/jvms.14-0333)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyake K 2007 Innate immune sensing of pathogens and danger signals by cell surface toll-like receptors. Seminars in Immunology 19 310. (https://doi.org/10.1016/j.smim.2006.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohammed ZA, Robinson RS, Harris R, McLaughlin Y, Turnbull KEM, Mann GE & & Woad KJ 2020 Detrimental effects of uterine disease and lipopolysaccharide on luteal angiogenesis. Journal of Endocrinology 245 7992. (https://doi.org/10.1530/JOE-19-0443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A & & Yegin O 2004 The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. European Respiratory Journal 23 219223. (https://doi.org/10.1183/09031936.03.00061703)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Price JC, Bromfield JJ & & Sheldon IM 2013 Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology 154 33773386. (https://doi.org/10.1210/en.2013-1102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raby AC, Holst B, Le Bouder E, Diaz C, Ferran E, Conraux L, Guillemot JC, Coles B, Kift-Morgan A, Colmont CS, et al.2013 Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Science Translational Medicine 5 185ra64. (https://doi.org/10.1126/scitranslmed.3005544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saber T, Veale DJ, Balogh E, McCormick J, NicAnUltaigh S, Connolly M & & Fearon U 2011 Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS One 6 e23540. (https://doi.org/10.1371/journal.pone.0023540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schroder NWJ, Heine H, Alexander C, Manukyan M, Eckert J, Hamann L, Gobel UB & & Schumann RR 2004 Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses. Journal of Immunology 173 26832691. (https://doi.org/10.4049/jimmunol.173.4.2683)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU & & Dobson H 2002 Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123 837845. (https://doi.org/10.1530/rep.0.1230837).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O & & Akira S 2003 Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiology and Immunology 47 327336. (https://doi.org/10.1111/j.1348-0421.2003.tb03404.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN & & Yancopoulos GD 1996 Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87 11711180. (https://doi.org/10.1016/s0092-8674(0081813-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeuchi O, Hoshino K & & Akira S 2000 Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. Journal of Immunology 165 53925396. (https://doi.org/10.4049/jimmunol.165.10.5392)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL & & Akira S 2002 Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. Journal of Immunology 169 1014. (https://doi.org/10.4049/jimmunol.169.1.10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tancowny BP, Karpov V, Schleimer RP & & Kulka M 2010 Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating toll-like receptor 2. Immunology 131 220230. (https://doi.org/10.1111/j.1365-2567.2010.03296.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williams CY, Harris TG, Battaglia DF, Viguie C & & Karsch FJ 2001 Endotoxin inhibits pituitary responsiveness to gonadotropin-releasing hormone. Endocrinology 142 19151922. (https://doi.org/10.1210/endo.142.5.8120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williams EJ, Sibley K, Miller AN, Lane EA, Fishwick J, Nash DM, Herath S, England GCW, Dobson H & & Sheldon IM 2008 The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. American Journal of Reproductive Immunology 60 462473. (https://doi.org/10.1111/j.1600-0897.2008.00645.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie F, Xiao P, Chen D, Xu L & & Zhang B 2012 miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology. (https://doi.org/10.1007/s11103-012-9885-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie F, Wang J & & Zhang B 2023 RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Functional and Integrative Genomics 23 125. (https://doi.org/10.1007/s10142-023-01055-7)

    • PubMed
    • Search Google Scholar
    • Export Citation