Investigations into the role of platelet-activating factor in the peri-conception period of the mare

in Reproduction
Authors:
Edwina F Lawson Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Edwina F Lawson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3508-4366
,
Arnab Ghosh School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
Centre for Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia

Search for other papers by Arnab Ghosh in
Current site
Google Scholar
PubMed
Close
,
Christopher Grupen Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia

Search for other papers by Christopher Grupen in
Current site
Google Scholar
PubMed
Close
,
Jacob Netherton Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Jacob Netherton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1812-4047
,
Robert John Aitken Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Robert John Aitken in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9152-156X
,
Nathan Druery Smith Analytical & Biomolecular Research Facility, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Nathan Druery Smith in
Current site
Google Scholar
PubMed
Close
,
Rebecca Lim Priority Research Centre for Brain and Mental Health University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Rebecca Lim in
Current site
Google Scholar
PubMed
Close
,
Hannah R Drury School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Hannah R Drury in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2208-8288
,
Russell Pickford Bioanalytical Mass Spectrometry Facility, University of New South Wales, Kensington, New South Wales, Australia.

Search for other papers by Russell Pickford in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8982-7618
,
Zamira Gibb Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Zamira Gibb in
Current site
Google Scholar
PubMed
Close
,
Mark Baker Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Mark Baker in
Current site
Google Scholar
PubMed
Close
,
Pradeep Singh Tanwar Global Centre for Gynaecological Diseases, University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Pradeep Singh Tanwar in
Current site
Google Scholar
PubMed
Close
, and
Aleona Swegen Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia.

Search for other papers by Aleona Swegen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7371-5400

Correspondence should be addressed to A Swegen: aleona.swegen@newcastle.edu.au
Restricted access
Rent on DeepDyve

Sign up for journal news

In Brief

In many mammals, the lipid platelet-activating factor (PAF) has important functions in female reproduction and fertility. This study shows that PAF is present in the reproductive tissues of mares and is involved in processes related to ovulation and early pregnancy.

Abstract

Platelet-activating factor (PAF) has been implicated in a number of reproductive processes ranging from ovulation to embryo motility but has not been widely explored in the mare. To identify the presence and examine the role of PAF in the equine periconception processes, targeted mass spectrometry coupled with chromatographic separation was performed on equine follicular fluid (FF), and PAF was quantitatively detected. Subsequently, untargeted high-resolution mass spectrometry-based lipidomic analysis was carried out to quantify PAF in different-sized pre-ovulatory follicles, whereby different molecular species of PAF, PAF (14:0) and PAF (16:1), were both seen to be increasing with follicle diameter. These findings suggest that PAF within FF is increasing as preovulatory follicles approach ovulation. Additionally, immunofluorescence staining identified the PAF receptor in the luminal pericellular, apical, and basal aspect of equine oviductal epithelial cells. Lastly, an equine oviductal epithelial organoid model was generated and showed that the addition of PAF significantly increased the ciliary beat frequency (CBF) (Hz), an action consistent with a role for PAF in embryo migration. It is proposed that the local action of PAF on the ciliated cells of the oviduct propels both the oocyte and the conceptus towards the uterus. In the mare, it appears that PAF is a contributor during the periconception period, potentially being a mediator in the mechanisms of ovulation and in the dialogue of very early pregnancy.

 

  • Collapse
  • Expand
  • Abe H & & Oikawa T 1993 Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anatomical Record 235 399410. (https://doi.org/10.1002/ar.1092350309)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ainsworth L, Baker RD & Armstrong DT 1975 Pre-ovulatory changes in follicular fluid prostaglandin F levels in swine1. Prostaglandins 9 915925. (https://doi.org/10.1016/0090-6980(7590079-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alexander BM, Van Kirk EA & & Murdoch WJ 1990 Secretion of platelet-activating factor by periovulatory ovine follicles. Life Sciences 47 865868. (https://doi.org/10.1016/0024-3205(9090599-m)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ali H, Fisher I, Haribabu B, Richardson RM & & Snyderman R 1997 Role of phospholipase Cβ3 phosphorylation in the desensitization of cellular responses to platelet-activating factor*. Journal of Biological Chemistry 272 1170611709. (https://doi.org/10.1074/jbc.272.18.11706)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Al-Saleh I, Coskun S, Al-Rouqi R, Al-Rajudi T, Eltabache C, Abduljabbar M & & Al-Hassan S 2021 Oxidative stress and DNA damage status in couples undergoing in vitro fertilization treatment. Reproduction and Fertility 2 117139. (https://doi.org/10.1530/RAF-20-0062)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amiel ML, Testart J & & Benveniste J 1991 Platelet-activating factor-acether is a component of human follicular fluid. Fertility and Sterility 56 6265. (https://doi.org/10.1016/s0015-0282(1654417-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ashraf MA & & Nookala V 2021 Biochemistry of platelet activating factor, StatPearls (Internet). StatPearls Publishing LLC: Treasure Island, FL, USA.

  • Aurich C & & Budik S 2015 Early pregnancy in the horse revisited – does exception prove the rule? Journal of Animal Science and Biotechnology 6 50. (https://doi.org/10.1186/s40104-015-0048-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Avilés M, Coy P & & Rizos D 2015 The oviduct: a key organ for the success of early reproductive events. Animal Frontiers 5 2531. (https://doi.org/10.2527/af.2015-0005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Battye KM, Ammit AJ, O'Neill C & & Evans G 1991 Production of platelet-activating factor by the pre-implantation sheep embryo. Journal of Reproduction and Fertility 93 507514. (https://doi.org/10.1530/jrf.0.0930507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bauminger A & & Lindner HR 1975 Periovulatory changes in ovarian prostaglandin formation and their hormonal control in the rat. Prostaglandins 9 737751. (https://doi.org/10.1016/0090-6980(7590111-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Betteridge KJ 2000 Comparative aspects of equine embryonic development. Animal Reproduction Science 60–61 691702. (https://doi.org/10.1016/s0378-4320(0000075-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bligh EG & & Dyer WJ 1959 A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37 911917. (https://doi.org/10.1139/o59-099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield EG, Aitken RJ, Gibb Z, Lambourne SR & & Nixon B 2014 Capacitation in the presence of methyl-beta-cyclodextrin results in enhanced zona pellucida-binding ability of stallion spermatozoa. Reproduction 147 153166. (https://doi.org/10.1530/REP-13-0393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castro-Perez JM, Kamphorst J, DeGroot J, Lafeber F, Goshawk J, Yu K, Shockcor JP, Vreeken RJ & & Hankemeier T 2010 Comprehensive LC-MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. Journal of Proteome Research 9 23772389. (https://doi.org/10.1021/pr901094j)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chao W & & Olson MS 1993 Platelet-activating factor: receptors and signal transduction. Biochemical Journal 292 617629. (https://doi.org/10.1042/bj2920617)

  • Chen S, Einspanier R & & Schoen J 2013 In vitro mimicking of estrous cycle stages in porcine oviduct epithelium cells: estradiol and progesterone regulate differentiation, gene expression, and cellular function. Biology of Reproduction 89 54. (https://doi.org/10.1095/biolreprod.113.108829)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cowan MJ, Gladwin MT & & Shelhamer JH 2001 Disorders of ciliary motility. American Journal of the Medical Sciences 321 310. (https://doi.org/10.1097/00000441-200101000-00002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuervo-Arango J, Aguilar J & & Newcombe JR 2009 Effect of type of semen, time of insemination relative to ovulation and embryo transfer on early equine embryonic vesicle growth as determined by ultrasound. Theriogenology 71 12671275. (https://doi.org/10.1016/j.theriogenology.2008.12.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Benedetto G, Magnus CJ, Gray PT & & Mehta A 1991 Calcium regulation of ciliary beat frequency in human respiratory epithelium in vitro. Journal of Physiology 439 103113. (https://doi.org/10.1113/jphysiol.1991.sp018659)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ezzati M, Djahanbakhch O, Arian S & & Carr BR 2014 Tubal transport of gametes and embryos: a review of physiology and pathophysiology. Journal of Assisted Reproduction and Genetics 31 13371347. (https://doi.org/10.1007/s10815-014-0309-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feinstein MB, Egan JJ, Sha'afi RI & & White J 1983 The cytoplasmic concentration of free calcium in platelets is controlled by stimulators of cyclic AMP production (PGD2, PGE1, forskolin). Biochemical and Biophysical Research Communications 113 598604. (https://doi.org/10.1016/0006-291x(8391768-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Felix MR, Turner RM, Dobbie T & & Hinrichs K 2022 Successful in vitro fertilization in the horse: production of blastocysts and birth of foals after prolonged sperm incubation for capacitation†. Biology of Reproduction 107 15511564. (https://doi.org/10.1093/biolre/ioac172)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganbo T, Hisamatsu K, Nakazawa T, Kamijo A & & Murakami Y 1991 Platelet activating factor (PAF) effects on ciliary activity of human paranasal sinus mucosa in vitro. Rhinology 29 231237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garrido D, Chanteloup NK, Trotereau A, Lion A, Bailleul G, Esnault E, Trapp S, Quéré P, Schouler C & & Guabiraba R 2017 Characterization of the phospholipid platelet-activating factor as a mediator of inflammation in chickens. Frontiers in Veterinary Science 4 226. (https://doi.org/10.3389/fvets.2017.00226)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gérard N & & Robin E 2019 Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: what do we know in the mare relative to other species. Theriogenology 130 163176. (https://doi.org/10.1016/j.theriogenology.2019.03.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghosh A, Syed SM & & Tanwar PS 2017 In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development 144 30313041. (https://doi.org/10.1242/dev.149989)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ginther OJ, Gastal EL, Gastal MO & & Beg MA 2008a Dynamics of the equine preovulatory follicle and periovulatory hormones: what's new? Journal of Equine Veterinary Science 28 454460. (https://doi.org/10.1016/j.jevs.2008.07.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ginther OJ, Gastal EL, Gastal MO & & Beg MA 2008b Passage of postovulatory follicular fluid into the peritoneal cavity and the effect on concentrations of circulating hormones in mares. Animal Reproduction Science 107 18. (https://doi.org/10.1016/j.anireprosci.2008.03.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • González SM, Silva CBd, Lindquist AG, Búfalo I, Machado FZ, Bueno JVR, Scarpin LC, Bergamo LZ, Silva-Santos KC, Marinho LSR, et al.2015 Recovery of equine oocytes by scraping of the follicular wall with different specifications of needles and morphological analysis of cumulus oophorus. Semina: Ciencias Agrarias 36 43334340. (https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4333)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamdan M, Jones KT, Cheong Y & & Lane SIR 2016 The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Scientific Reports 6 36994. (https://doi.org/10.1038/srep36994)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatzel JN, Bouma GJ, Cleys ER, Bemis LT, Ehrhart EJ & & McCue PM 2014 Identification of heat shock protein 10 within the equine embryo, endometrium, and maternal peripheral blood mononuclear cells. Theriogenology 83 832839. (https://doi.org/10.1016/j.theriogenology.2014.11.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hermoso M, Barrera N, Morales B, Perez S & & Villalon M 2001 Platelet activating factor increases ciliary activity in the hamster oviduct through epithelial production of prostaglandin E 2. Pflügers Archiv 442 336345. (https://doi.org/10.1007/s004240100550)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hinrichs K 2005 Update on equine ICSI and cloning. Theriogenology 64 535541. (https://doi.org/10.1016/j.theriogenology.2005.05.010)

  • Huang H-S, Chu S-C, Hsu C-F, Chen P-C, Ding D-C, Chang M-Y & & Chu T-Y 2015 Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis 36 14191428. (https://doi.org/10.1093/carcin/bgv132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, Cao WH, Kume K, Fukuchi Y, Ikuta K, et al.1998 Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. Journal of Experimental Medicine 187 17791788. (https://doi.org/10.1084/jem.187.11.1779)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito S, Yamamoto Y & & Kimura K 2020 Analysis of ciliogenesis process in the bovine oviduct based on immunohistochemical classification. Molecular Biology Reports 47 10031012. (https://doi.org/10.1007/s11033-019-05192-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koeberle A 2016 Target identification and lead discovery by functional lipidomics. Future Medicinal Chemistry 8 21692171. (https://doi.org/10.4155/fmc-2016-0182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lansley AB, Sanderson MJ & & Dirksen ER 1992 Control of the beat cycle of respiratory tract cilia by Ca2+ and cAMP. American Journal of Physiology 263 L232L 242. (https://doi.org/10.1152/ajplung.1992.263.2.L232)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lawson EF, Grupen CG, Baker MA, Aitken RJ, Swegen A, Pollard C-L & & Gibb Z 2022 Conception and early pregnancy in the mare: lipidomics the unexplored frontier. Reproduction and Fertility 3 R1R18. (https://doi.org/10.1530/RAF-21-0104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lawson EF, Ghosh A, Blanch V, Grupen CG, Aitken RJ, Lim R, Drury HR, Baker MA, Gibb Z & & Tanwar PS 2023 Establishment and characterization of oviductal organoids from farm and companion animals†. Biology of Reproduction 108 854865. (https://doi.org/10.1093/biolre/ioad030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leemans B, Gadella BM, Stout TAE, Nelis H, Hoogewijs M & & Van Soom A 2015 An alkaline follicular fluid fraction induces capacitation and limited release of oviduct epithelium-bound stallion sperm. Reproduction 150 193208. (https://doi.org/10.1530/REP-15-0178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lepage N, Miron P, Hemmings R, Roberts KD & & Langlais J 1993 Distribution of lysophospholipids and metabolism of platelet-activating factor in human follicular and peritoneal fluids. Journal of Reproduction and Fertility 98 349356. (https://doi.org/10.1530/jrf.0.0980349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lim R, Drury HR, Camp AJ, Tadros MA, Callister RJ & & Brichta AM 2014 Preliminary characterization of voltage-activated whole-cell currents in developing human vestibular hair cells and calyx afferent terminals. Journal of the Association for Research in Otolaryngology 15 755766. (https://doi.org/10.1007/s10162-014-0471-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • López Bernal A, Newman GE, Phizackerley PJ, Laird E, Ross C & & Barlow DH 1992 Platelet-activating factor levels in human follicular and amniotic fluids. European Journal of Obstetrics, Gynecology, and Reproductive Biology 46 3944. (https://doi.org/10.1016/0028-2243(9290277-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyons RA, Saridogan E & & Djahanbakhch O 2006 The reproductive significance of human Fallopian tube cilia. Human Reproduction Update 12 363372. (https://doi.org/10.1093/humupd/dml012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyoshi H & & Stappenbeck TS 2013 In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nature Protocols 8 24712482. (https://doi.org/10.1038/nprot.2013.153)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakatsuka M, Yoshida N & & Kudo T 1992 Platelet activating factor in culture media as an indicator of human embryonic development after in-vitro fertilization. Human Reproduction 7 14351439. (https://doi.org/10.1093/oxfordjournals.humrep.a137590)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nambo YH, Hasegawa T, Sato F, Oki H, Kusunose R, Nakai R, Nagata S, Watanabe G & & Taya K 2002 The release of follicular fluid into the peritoneal cavity during ovulation in mares. Theriogenology 58 545548. (https://doi.org/10.1016/S0093-691X(0200784-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Narahara H, Tanaka Y, Kawano Y, Miyakawa I & & Johnston JM 1996 Platelet-activating factor acetylhydrolase activity in human follicular fluid. In Lipid Mediators 2: Roles in Health and Disease. Nigam S, Kunkel G, & Prescott SM Eds. Boston, MA: Springer US, pp. 121127. (https://doi.org/10.1007/978-1-4899-0179-8_21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Norman SJ & & Poyser NL 1992 The effects of platelet-activating factor on the output of prostaglandins from the guinea-pig uterus. Prostaglandins, Leukotrienes, and Essential Fatty Acids 47 285289. (https://doi.org/10.1016/0952-3278(9290199-s)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Odeh AI, Dascanio JJ, Caceci T, Bowen J & & Eng LA 2003 Effect of platelet-activating factor (PAF) on stallion sperm motility, capacitation and the acrosome reaction. Reproduction 126 605613. (https://doi.org/10.1530/rep.0.1260605)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ohnuma K, Yokoo M, Ito K, Nambo Y, Miyake YI, Komatsu M & & Takahashi J 2000 Study of early pregnancy factor (EPF) in equine (Equus caballus). American Journal of Reproductive Immunology 43 174179. (https://doi.org/10.1111/j.8755-8920.2000.430307.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O'Neill C 2005 The role of paf in embryo physiology. Human Reproduction Update 11 215228. (https://doi.org/10.1093/humupd/dmi003)

  • Pang C, An F, Yang S, Yu N, Chen D & & Chen L 2020 In vivo and in vitro observation of nasal ciliary motion in a guinea pig model. Experimental Biology and Medicine (Maywood 245 10391048. (https://doi.org/10.1177/1535370220926443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pierson RA & & Ginther OJ 1985 Ultrasonic evaluation of the preovulatory follicle in the mare. Theriogenology 24 359368. (https://doi.org/10.1016/0093-691x(8590228-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pike IL, Ammit AJ & & O'Neill C 1992 Actions of platelet activating factor (PAF) on gametes and embryos: clinical aspects. Reproduction, Fertility, and Development 4 399410. (https://doi.org/10.1071/rd9920399)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rabinovici J & & Angle MJ 1991 Platelet-activating factor induces progesterone secretion and changes in morphological appearance in luteinizing granulosa cells in vitro. Fertility and Sterility 55 11061111. (https://doi.org/10.1016/s0015-0282(1654360-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rhee CK, Jeong PS, Kim YH, Chung PS & & Jung TT 1999 Effect of platelet activating factor and its antagonist on the mucociliary clearance of the eustachian tube in guinea pigs. Annals of Otology, Rhinology, and Laryngology 108 453458. (https://doi.org/10.1177/000348949910800506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salamonsen LA, Evans J, Nguyen HPT & & Edgell TA 2016 The microenvironment of human implantation: determinant of reproductive success. American Journal of Reproductive Immunology 75 218225. (https://doi.org/10.1111/aji.12450)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmid A & & Salathe M 2011 Ciliary beat co-ordination by calcium. Biology of the Cell 103 159169. (https://doi.org/10.1042/BC20100120)

  • Stein BA & & O'Neill C 1994 Morphometric evidence of changes in the vasculature of the uterine tube of mice induced by the 2-cell embryo on the second day of pregnancy. Journal of Anatomy 185 397403.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sueoka K, Dharmarajan AM, Miyazaki T, Atlas SJ & & Wallach EE 1988 Platelet activating factor-induced early pregnancy factor activity from the perfused rabbit ovary and oviduct. American Journal of Obstetrics and Gynecology 159 15801584. (https://doi.org/10.1016/0002-9378(8890598-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suzuki H, Taguchi Y, Kojima T, Nishihira J & & Kanagawa H 1995 Evidence for the production of platelet-activating factor by murine embryos and its putative role in the maternal physiology. Biochemistry and Molecular Biology International 37 617626.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swegen A 2021 Maternal recognition of pregnancy in the mare: does it exist and why do we care? Reproduction 161 R139R155. (https://doi.org/10.1530/REP-20-0437)

  • Tal R & & Taylor HS 2021 Endocrinology of Pregnancy. In: KR Feingold, B Anawalt, MR Blackman, et al., editors. Endotext (Internet)South Dartmouth, MA, USA MDText.com, Inc.; 2000. (Available from https://www.ncbi.nlm.nih.gov/books/NBK278962/)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thévenaz P, Ruttimann UE & & Unser M 1998 A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing 7 2741. (https://doi.org/10.1109/83.650848)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tiemann U, Bücher K, Pfarrer Ch, Pöhland R, Becker F, Kanitz W & & Schmidt P 2005 Influence of ovarian steroid hormones or platelet-activating factor on mRNA of platelet-activating factor receptor in endometrial explant perfusion cultures from ovariectomized bovine. Prostaglandins and Other Lipid Mediators 76 3547. (https://doi.org/10.1016/j.prostaglandins.2004.10.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Travers JB, Rohan JG & & Sahu RP 2021 New insights into the pathologic roles of the platelet-activating factor system. Frontiers in Endocrinology 12 624132. (https://doi.org/10.3389/fendo.2021.624132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Niekerk CH & & Gerneke WH 1966 Persistence and parthenogentic cleavage of tubal ova in the mare. Onderstepoort Journal of Veterinary Research 33 195232.

  • Vandenberghe LTM, Heindryckx B, Smits K, Szymanska K, Ortiz-Escribano N, Ferrer-Buitrago M, Pavani K, Peelman L, Deforce D, De Sutter P, et al.2018 Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) is required for the formation of the meiotic spindle during in vitro oocyte maturation. Reproduction, Fertility, and Development 30 17391750. (https://doi.org/10.1071/RD18019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vandenberghe LTM, Heindryckx B, Smits K, Popovic M, Szymanska K, Bonte D, Peelman L, Deforce D, De Sutter P, Van Soom A, et al.2019 Intracellular localisation of platelet-activating factor during mammalian embryo development in vitro: a comparison of cattle, mouse and human. Reproduction, Fertility, and Development 31 658670. (https://doi.org/10.1071/RD18146)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Velasquez LA, Aguilera JG & & Croxatto HB 1995 Possible role of platelet-activating factor in embryonic signaling during oviductal transport in the hamster. Biology of Reproduction 52 13021306. (https://doi.org/10.1095/biolreprod52.6.1302)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Velasquez LA, Maisey K, Fernandez R, Valdes D, Cardenas H, Imarai M, Delgado J, Aguilera J & & Croxatto HB 2001 PAF receptor and PAF acetylhydrolase expression in the endosalpinx of the human Fallopian tube: possible role of embryo-derived PAF in the control of embryo transport to the uterus. Human Reproduction 16 15831587. (https://doi.org/10.1093/humrep/16.8.1583)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Velasquez LA, Ojeda SR & & Croxatto HB 1997 Expression of platelet-activating factor receptor in the hamster oviduct: localization to the endosalpinx. Journal of Reproduction and Fertility 109 349354. (https://doi.org/10.1530/jrf.0.1090349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weber JA, Freeman DA, Vanderwall DK & & Woods GL 1991 Prostaglandin E2 secretion by oviductal transport-stage equine embryos. Biology of Reproduction 45 540543. (https://doi.org/10.1095/biolreprod45.4.540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan S, Wang Z, Peng H, Ward SM, Hennig GW, Zheng H & & Yan W 2021 Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. PNAS 118 e2102940118. (https://doi.org/10.1073/pnas.2102940118)

    • PubMed
    • Search Google Scholar
    • Export Citation