Role of L-glutamine in the regulation of rat Sertoli cell proliferation by FSH

in Reproduction
Authors:
Cecilia Lucia Centola Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Ciudad Autónoma de Buenos Aires, Argentina

Search for other papers by Cecilia Lucia Centola in
Current site
Google Scholar
PubMed
Close
,
Marina Ercilia Dasso Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Ciudad Autónoma de Buenos Aires, Argentina

Search for other papers by Marina Ercilia Dasso in
Current site
Google Scholar
PubMed
Close
,
Maria Fernanda Riera Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Ciudad Autónoma de Buenos Aires, Argentina

Search for other papers by Maria Fernanda Riera in
Current site
Google Scholar
PubMed
Close
,
Silvina Beatriz Meroni Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Ciudad Autónoma de Buenos Aires, Argentina

Search for other papers by Silvina Beatriz Meroni in
Current site
Google Scholar
PubMed
Close
, and
Maria Noel Galardo Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Ciudad Autónoma de Buenos Aires, Argentina

Search for other papers by Maria Noel Galardo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2678-622X

Correspondence should be addressed to M N Galardo: mngalardo@cedie.org.ar
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

FSH leads to glutamine dependence, which is required for mTORC1 activation and in consequence Sertoli cell proliferation.

Abstract

The spermatogenic capacity of adult individuals depends on, among other factors, the number of Sertoli cells (SCs) that result from the proliferative waves during development. FSH upregulates SC proliferation at least partly, through the activation of the PI3K/Akt/mTORC1 pathway, among other mechanisms. It is widely known that mTORC1 is a sensor of amino acids. Among amino acids, glutamine acquires relevance since it might contribute to cell cycle progression through the modulation of mTORC1 activity. It has not been studied yet whether glutamine intervenes in FSH-mediated regulation of SC proliferation and cell cycle progression, or if FSH has any effect on glutamine metabolism. Eight-day-old rat SCs were incubated in culture media without glutamine or with glutamine in the absence or presence of a glutamine transporter inhibitor or a glutaminase activity inhibitor under basal conditions or stimulated with FSH. The results obtained show that FSH does not promote SC proliferation and mTORC1 activation in the absence of glutamine. Also, FSH modulates glutamine metabolism increasing glutaminase isoform 2 and reducing glutamine synthetaseexpression. FSH did not promote SC proliferation and mTORC1 activation when glutaminase activity was inhibited. The results suggest that glutamine or its metabolites might cooperate with FSH in the upregulation of SC proliferation through mTORC1. In addition, as FSH modulates glutamine metabolism through the induction of glutaminase isoform 2, the hormonal control of glutamine metabolism might be part of the intricate signaling network triggered by FSH, which is crucial to establish the population of mature SCs that supports the reproductive function.

 

  • Collapse
  • Expand
  • Agathocleous M & & Harris WA 2013 Metabolism in physiological cell proliferation and differentiation. Trends in Cell Biology 23 484492. (https://doi.org/10.1016/j.tcb.2013.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Avissar NE, Sax HC & & Toia L 2008 In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and Rho-dependent. Digestive Diseases and Sciences 53 21132125. (https://doi.org/10.1007/s10620-007-0120-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bautista SJ, Boras I, Vissa A, Mecica N, Yip CM, Kim PK & & Antonescu CN 2018 mTOR complex 1 controls the nuclear localization and function of glycogen synthase kinase 3β. Journal of Biological Chemistry 293 1472314739. (https://doi.org/10.1074/jbc.RA118.002800)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhutia YD & & Ganapathy V 2016 Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta 1863 25312539. (https://doi.org/10.1016/j.bbamcr.2015.12.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bretones G, Delgado MD & & León J 2015 Myc and cell cycle control. Biochimica et Biophysica Acta 1849 506516. (https://doi.org/10.1016/j.bbagrm.2014.03.013)

  • Buczkowska J & & Szeliga M 2023 Two faces of glutaminase GLS2 in carcinogenesis. Cancers (Basel) 15 5566. (https://doi.org/10.3390/cancers15235566)

  • Centola CL, Dasso ME, Soria JD, Riera MF, Meroni SB & & Galardo MN 2023 Glycolysis as key regulatory step in FSH-induced rat Sertoli cell proliferation: role of the mTORC1 pathway. Biochimie 214 145156. (https://doi.org/10.1016/j.biochi.2023.07.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP & & Sabatini DM 2016 The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165 153164. (https://doi.org/10.1016/j.cell.2016.02.035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen R, Lai LA, Sullivan Y, Wong M, Wang L, Riddell J, Jung L, Pillarisetty VG, Brentnall TA & & Pan S 2017 Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Scientific Reports 7 7950. (https://doi.org/10.1038/s41598-017-08436-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen PR, Lucas CG, Spate LD & & Prather RS 2021 Glutaminolysis is involved in the activation of mTORC1 in in vitro-produced porcine embryos. Molecular Reproduction and Development 88 490499. (https://doi.org/10.1002/mrd.23516)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crepieux P, Marion S, Martinat N, Fafeur V, Vern YL, Kerboeuf D, Guillou F & & Reiter E 2001 The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene 20 46964709. (https://doi.org/10.1038/sj.onc.1204632)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Curthoys NP & & Watford M 1995 Regulation of glutaminase activity and glutamine metabolism. Annual Review of Nutrition 15 133159. (https://doi.org/10.1146/annurev.nu.15.070195.001025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E & & Hall MN 2012 Glutaminolysis activates Rag-mTORC1 signaling. Molecular Cell 47 349358. (https://doi.org/10.1016/j.molcel.2012.05.043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, Rudelius M, Bargou R & & Bommert K 2017 Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget 8 8585885867. (https://doi.org/10.18632/oncotarget.20691)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eleftheriadis T, Pissas G, Antoniadi G, Tsogka K, Sounidaki M, Liakopoulos V & & Stefanidis I 2015 Indoleamine 2,3-dioxygenase downregulates T-cell receptor complex ζ-chain and c-Myc, and reduces proliferation, lactate dehydrogenase levels and mitochondrial glutaminase in human T-cells. Molecular Medicine Reports 13 925932. (https://doi.org/10.3892/mmr.2015.4595)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frieg B, Görg B, Gohlke H & & Häussinger D 2021 Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biological Chemistry 402 10631072. (https://doi.org/10.1515/hsz-2021-0166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galardo MN, Riera MF, Pellizzari EH, Chemes HE, Venara MC, Cigorraga SB & & Meroni SB 2008 Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different time-points in pubertal development. Cell and Tissue Research 334 295304. (https://doi.org/10.1007/s00441-008-0656-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorga A, Rindone G, Regueira M, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB & & Galardo MN 2018 HIF involvement in the regulation of rat Sertoli cell proliferation by FSH. Biochemical and Biophysical Research Communications 502 508514. (https://doi.org/10.1016/j.bbrc.2018.05.206)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grandori C, Cowley SM, James LP & & Eisenman RN 2000 The Myc/Max/Mad network and the transcriptional control of cell behavior. Annual Review of Cell and Developmental Biology 16 653699. (https://doi.org/10.1146/annurev.cellbio.16.1.653)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Griswold MD, Mably ER & & Fritz IB 1976 FSH stimulation of DNA synthesis in Sertoli cells in culture. Molecular and Cellular Endocrinology 4 139149. (https://doi.org/10.1016/0303-7207(7690033-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence JC Jr & & Houghton PJ 1998 Studies on the mechanism of resistance to rapamycin in human cancer cells. Molecular Pharmacology 54 815824. (https://doi.org/10.1124/mol.54.5.815)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu J, Ling Z, Li W, Su Z, Lu J, Zeng Q, Cheng B & & Tao X 2023 Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus. Journal of Oral Pathology and Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 52 150160. (https://doi.org/10.1111/jop.13391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS & & Guan KL 2015 Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347 194198. (https://doi.org/10.1126/science.1259472)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaiser GRRF, Monteiro SC, Gelain DP, Souza LF, Perry MLS & & Bernard EA 2005 Metabolism of amino acids by cultured rat Sertoli cells. Metabolism: Clinical and Experimental 54 515521. (https://doi.org/10.1016/j.metabol.2004.11.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katt WP, Lukey MJ & & Cerione RA 2017 A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Medicinal Chemistry 9 223243. (https://doi.org/10.4155/fmc-2016-0190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kovacevic Z & & McGivan JD 1983 Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiological Reviews 63 547605. (https://doi.org/10.1152/physrev.1983.63.2.547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li XZ & & Yan XH 2019 Sensors for the mTORC1 pathway regulated by amino acids. Journal of Zhejiang University. Science. B 20 699712. (https://doi.org/10.1631/jzus.B1900181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li S, Pei L, Zhou Q, Fu Z, Zhang L, Liu P, Yan N & & Xi S 2023 SLC1A5 regulates cell proliferation and self-renewal through β-catenin pathway mediated by redox signaling in arsenic-treated uroepithelial cells. Ecotoxicology and Environmental Safety 262 115204. (https://doi.org/10.1016/j.ecoenv.2023.115204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ling HH, Pan YP, Fan CW, Tseng WK, Huang JS, Wu TH, Chou WC, Wang CH, Yeh KY & & Chang PH 2019 Clinical significance of serum glutamine level in patients with colorectal cancer. Nutrients 11 898. (https://doi.org/10.3390/nu11040898)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lukey MJ, Cluntun AA, Katt WP, Lin MJ, Druso JE, Ramachandran S, Erickson JW, Le HH, Wang ZE, Blank B, et al.2019 Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer. Cell Reports 29 7688.e7. (https://doi.org/10.1016/j.celrep.2019.08.076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mateus I, Feijó M, Espínola LM, Vaz CV, Correia S & & Socorro S 2018 Glucose and glutamine handling in the Sertoli cells of transgenic rats overexpressing regucalcin: plasticity towards lactate production. Scientific Reports 8 10321. (https://doi.org/10.1038/s41598-018-28668-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McMenamy RH, Lund CC & & Oncley JL 1957 Unbound amino acid concentrations in human blood plasmas. Journal of Clinical Investigation 36 16721679. (https://doi.org/10.1172/JCI103568)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, Leibach FH, Prasad PD & & Ganapathy V 2001 Cloning and functional characterization of a new subtype of the amino acid transport system N. American Journal of Physiology Cellular Physiology 281 17571768. (https://doi.org/10.1152/ajpcell.2001.281.6.C1757)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al.2009 Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136 521534. (https://doi.org/10.1016/j.cell.2008.11.044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orth JM 1984 The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 115 12481255. (https://doi.org/10.1210/endo-115-4-1248)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orth JM, Gunsalus GL & & Lamperti AA 1988 Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 122 787794. (https://doi.org/10.1210/endo-122-3-787)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Regueira M, Riera MF, Galardo MN, Pellizzari EH, Cigorraga SB & & Meroni SB 2014 Activation of PPAR α and PPAR β/δ regulates Sertoli cell metabolism. Molecular and Cellular Endocrinology 382 271281. (https://doi.org/10.1016/j.mce.2013.10.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Regueira M, Artagaveytia SL, Galardo MN, Pellizzari EH, Cigorraga SB, Meroni SB, Riera MF 2015 Novel molecular mechanisms involved in hormonal regulation of lactate production in Sertoli cells. Reproduction 150 311–321. (https://doi.org/10.1530/REP-15-0093)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riera MF, Regueira M, Galardo MN, Pellizzari EH, Meroni SB & & Cigorraga SB 2012 Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation. American Journal of Physiology, Endocrinology and Metabolism 302 E914E923. (https://doi.org/10.1152/ajpendo.00477.2011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salabei JK, Lorkiewicz PK, Holden CR, Li Q, Hong KU, Bolli R, Bhatnagar A & & Hill BG 2015 Glutamine regulates cardiac progenitor cell metabolism and proliferation. Stem Cells 33 26132627. (https://doi.org/10.1002/stem.2047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, Schwartz TU & & Sabatini DM 2016 Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351 5358. (https://doi.org/10.1126/science.aad2087)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharpe RM, McKinnell C, Kivlin C & & Fisher JS 2003 Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125 769784. (https://doi.org/10.1530/rep.0.1250769)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen Y, Zhang Y, Li W, Chen K, Xiang M & Ma H 2021 Glutamine metabolism: from proliferating cells to cardiomyocytes. Metabolism 121 154778. (https://doi.org/10.1016/j.metabol.2021.154778)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shyer JA, Flavell RA & & Bailis W 2020 Metabolic signaling in T cells. Cell Research 30 649659. (https://doi.org/10.1038/s41422-020-0379-5)

  • Smith EM & & Watford M 1990 Molecular cloning of a cDNA for rat hepatic glutaminase. Sequence similarity to kidney-type glutaminase. Journal of Biological Chemistry 265 1063110636. (https://doi.org/10.1016/S0021-9258(1886993-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tambay V, Raymond VA & & Bilodeau M 2021 MYC rules: leading glutamine metabolism toward a distinct cancer cell phenotype. Cancers (Basel) 13 4484. (https://doi.org/10.3390/cancers13174484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan HWS, Sim AYL & & Long YC 2017 Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nature Communications 8 338. (https://doi.org/10.1038/s41467-017-00369-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thangavelu K, Chong QY, Low BC & & Sivaraman J 2014 Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Scientific Reports 4 3827. (https://doi.org/10.1038/srep03827)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tritsch GL & & Moore GE 1962 Spontaneous decomposition of glutamine in cell culture media. Experimental Cell Research 28 360364. (https://doi.org/10.1016/0014-4827(6290290-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, Putker M, van Zutphen IJ, Mauthe M, Zellmer S, Pals C, et al.2012 Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nature Cell Biology 14 829837. (https://doi.org/10.1038/ncb2536)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vaupel P & & Multhoff G 2021 Revisiting the Warburg effect: historical dogma versus current understanding. Journal of Physiology 599 17451757. (https://doi.org/10.1113/JP278810)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, et al.2011 The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35 871882. (https://doi.org/10.1016/j.immuni.2011.09.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Huang Y, Zhao L, Li Y & & Zheng J 2014 Glutaminase 1 is essential for the differentiation, proliferation, and survival of human neural progenitor cells. Stem Cells and Development 23 27822790. (https://doi.org/10.1089/scd.2014.0022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wise DR & & Thompson CB 2010 Glutamine addiction: a new therapeutic target in cancer. Trends in Biochemical Sciences 35 427433. (https://doi.org/10.1016/j.tibs.2010.05.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu C, Chen L, Jin S & & Li H 2018 Glutaminase inhibitors: a patent review. Expert Opinion on Therapeutic Patents 28 823835. (https://doi.org/10.1080/13543776.2018.1530759)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao D, Ren P, Su H, Yue M, Xiu R, Hu Y, Liu H & & Qing G 2015 Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget 6 4065540666. (https://doi.org/10.18632/oncotarget.5821)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao Y, Hu B, Guo Y, Zhang D, Zhao Y, Chen Y, Li N & & Yu L 2023 Targeting glutamine metabolism as an attractive therapeutic strategy for acute myeloid leukemia. Current Treatment Options in Oncology 24 10211035. (https://doi.org/10.1007/s11864-023-01104-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoo HC, Yu YC, Sung Y & & Han JM 2020 Glutamine reliance in cell metabolism. Experimental and Molecular Medicine 52 14961516. (https://doi.org/10.1038/s12276-020-00504-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ, Karner CM 2019 Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metabolism 29 966978. (https://doi.org/10.1016/j.cmet.2019.01.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu W, Yang X, Zhang Q, Sun L, Yuan S & & Xin Y 2021 Targeting GLS1 to cancer therapy through glutamine metabolism. Clinical and Translational Oncology 23 22532268. (https://doi.org/10.1007/s12094-021-02645-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan L, Sheng X, Willson AK, Roque DR, Stine JE, Guo H, Jones HM, Zhou C & & Bae-Jump VL 2015 Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocrine-Related Cancer 22 577591. (https://doi.org/10.1530/ERC-15-0192)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Pavlova NN & & Thompson CB 2017 Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO Journal 36 13021315. (https://doi.org/10.15252/embj.201696151)

    • PubMed
    • Search Google Scholar
    • Export Citation