IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: A contemporary review of machine learning to predict adverse pregnancy outcomes from pharmaceuticals, including DDIs

in Reproduction
Authors:
Julie Gardella NYU Langone Health, Department of Medicine, Division of Environmental Medicine, New York, USA

Search for other papers by Julie Gardella in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0007-3740-8797
,
Dimitri Abrahamsson NYU Langone Health, Department of Pediatrics, New York, USA

Search for other papers by Dimitri Abrahamsson in
Current site
Google Scholar
PubMed
Close
, and
Judith Zelikoff NYU Langone Health, Department of Medicine, Division of Environmental Medicine, New York, USA

Search for other papers by Judith Zelikoff in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J Gardella: jmg874@nyu.edu

This paper forms part of a special series on the Impact of Real-Life Environmental Exposures on Reproduction. The Guest Editors for this special series were Professor Jodi A Flaws (University of Illinois, IL, USA) and Professor Emerita (in service) Vasantha Padmanabhan (University of Michigan, MI, USA).

Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Clinical drug trials often do not include pregnant people due to health risks; therefore, many medications have an unknown effect on the developing fetus. Machine learning QSAR models have been used successfully to predict the fetal risk of pharmaceutical use during pregnancy.

Abstract

Those undergoing pregnancy are often excluded from clinical drug trials due to the risk that participation would pose to their health and the health of the developing fetus. However, they often require pharmaceuticals to manage health conditions that, if left untreated, could harm themselves or the fetus. This can mean that such individuals take one or more pharmaceuticals during pregnancy, many of which have unknown reproductive effects. Machine learning models have been used to successfully predict a number of reproductive toxicological outcomes for pharmaceuticals, including transplacental transfer, US Food and Drug Administration safety rating, and drug interactions. Models use quantitative chemical and structural features of active compounds as inputs to make predictions concerning the outcome of interest using computational algorithms. Models are validated and evaluated rigorously with metrics such as accuracy, area under the receiver operator curve, sensitivity, and precision. Results from these models can be a potential source of valuable information for pregnant people and their medical providers when making decisions regarding therapeutic drug use. This review summarizes current machine learning applications to make predictions about the risk and toxicity of medication use during pregnancy. Our review of the recent literature revealed that machine learning quantitative structure-activity relationship models can be used successfully to predict the transplacental transfer and the US Food and Drug Administration pregnancy safety category of pharmaceuticals; such models have also been employed to predict drug interactions, though not specifically during pregnancy. This latter topic is a potential area for future research. In this review, no single algorithm or descriptor-calculation software emerged as the most widely used, and their performances depend on a variety of factors, including the outcome of interest and combination of such algorithms and software.

 

  • Collapse
  • Expand
  • Abrahamsson D, Siddharth A, Robinson JF, Soshilov A, Elmore S, Cogliano V, Ng C, Khan E, Ashton R, Chiu WA, et al.2022 Modeling the transplacental transfer of small molecules using machine learning: a case study on per- and polyfluorinated substances (PFAS). Journal of Exposure Science and Environmental Epidemiology 32 808819. (https://doi.org/10.1038/s41370-022-00481-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alvarez-Silvares E, Fernandez-Cruz T, Dominguez-Vigo P, Rubio-Cid P, Seoane-Pillado T & & Martinez-Carballo E 2021 Association between placenta concentrations polybrominated and polychlorinated biphenyls and gestational diabetes mellitus: a case-control study in northwestern Spain. Environmental Science and Pollution Research International 28 1029210301. (https://doi.org/10.1007/s11356-021-12377-z).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andrade SE, Gurwitz JH, Davis RL, Chan KA, Finkelstein JA, Fortman K, McPhillips H, Raebel MA, Roblin D & Smith DH , et al.2004 Prescription drug use in pregnancy. American Journal of Obstetrics and Gynecology 191 398407. (https://doi.org/10.1016/j.ajog.2004.04.025).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baptista D, Correia J, Pereira B & & Rocha M 2022 Evaluating molecular representations in machine learning models for drug response prediction and interpretability. Journal of Integrative Bioinformatics 19. (https://doi.org/10.1515/jib-2022-0006).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baumann D & & Baumann K 2014 Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. Journal of Cheminformatics 6. . (https://doi.org/10.1186/s13321-014-0047-1).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bettonte S, Berton M & & Marzolini C 2022 Magnitude of drug–drug interactions in special populations. Pharmaceutics 14 789. (https://doi.org/10.3390/pharmaceutics14040789)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boland MR, Polubriaginof F & & Tatonetti NP 2017 Development of A machine learning algorithm to classify drugs of unknown fetal effect. Scientific Reports 7 12839. (https://doi.org/10.1038/s41598-017-12943-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Breiman L 2001 Random forests. Machine Learning 45 532. (https://doi.org/10.1023/A:1010933404324).

  • Brown SHJ, Eather SR, Freeman DJ, Meyer BJ & & Mitchell TW 2016 A lipidomic analysis of placenta in preeclampsia: evidence for lipid storage. PLoS One 11 e0163972. (https://doi.org/10.1371/journal.pone.0163972).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bukkems VE, Colbers A, Marzolini C, Molto J & & Burger DM 2020 Drug–drug interactions with antiretroviral drugs in pregnant women living with HIV: are they different from nonpregnant individuals? Clinical Pharmacokinetics 59 12171236. (https://doi.org/10.1007/s40262-020-00914-x).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao Y, Charisi A, Cheng L-C, Jiang T & & Girke T 2008 ChemmineR: a compound mining framework for R. Bioinformatics 24 17331734. (https://doi.org/10.1093/bioinformatics/btn307).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cedargreen N 2014 Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9 e96580. (https://doi.org/10.1371/journal.pone.0096580).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Challa AP, Beam AL, Shen M, Peryea T, Lavieri RR, Lippmann ES & & Aronoff DM 2020 Machine learning on drug-specific data to predict small molecule teratogenicity. Reproductive Toxicology 95 148158. (https://doi.org/10.1016/j.reprotox.2020.05.004).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chandrasekar V, Ansari MY, Singh AV, Uddin S, Prabhu KS, Dash S, Al Khodor SA, Terranegra A, Avella M & & Dakua SP 2021 Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access 11 5272652739. (https://doi.org/10.1109/ACCESS.2023.3272987)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Q, Gan Y, Wang K & & Li Q 2022 PregTox: a resource of knowledge about drug fetal toxicity. BioMed Research International 2022 4284146. (https://doi.org/10.1155/2022/4284146)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen T & & Guestrin C 2016 XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery. (https://doi.org/10.1145/2939672.2939785).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng F & & Zhao Z 2014 Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. Journal of the American Medical Informatics Association 21 e278e286. (https://doi.org/10.1136/amiajnl-2013-002512)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Filippo JI, Bollini M & & Cavasotto CN 2021 A machine learning model to predict drug transfer across the human placenta barrier. Frontiers in Chemistry 9 714678. (https://doi.org/10.3389/fchem.2021.714678)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong J, Cao D-S, Miao H-Y, Liu S, Deng B-C, Yun Y-H, Wang N-N, Lu A-P, Zeng W-B & & Chen AF 2015 ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation. Journal of Cheminformatics 7 60. (https://doi.org/10.1186/s13321-015-0109-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eryasa B, Grandjean P, Nielsen F, Valvi D, Zmirou-Navier D, Sunderland E, Weihe P & & Oulhote Y 2019 Physico-chemical properties and gestational diabetes predict transplacental transfer and partitioning of perfluoroalkyl substances. Environment International 130 104874. (https://doi.org/10.1016/j.envint.2019.05.068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faramarzi S, Kim MT, Volpe DA, Cross KP, Chakravarti S & & Stavitskaya L 2022 Development of QSAR models to predict blood-brain barrier permeability. Frontiers in Pharmacology 13. (https://doi.org/10.3389/fphar.2022.1040838)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hall LH & & Kier LB 1999 Molecular connectivity chi indices for database analysis and structure-property modeling. In Topological Indices and Related Descriptors in QSAR and QSPR. Devillers J, & Balaban A Eds., (1st ed., pp. 307–361)CRC Press by Taylor and Francis Group, LLC. https://www.taylorfrancis.com/chapters/edit/10.1201/9781482296945-13/molecular-connectivity-chi-indices-database-analysis-structure-property-modeling-hall-kier.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Honein MA, Gilboa SM & & Broussard CS 2013 The need for safer medication use in pregnancy. Expert Review of Clinical Pharmacology 6 453 455. (https://doi.org/10.1586/17512433.2013.827401).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hong E, Jeon J & & Kim HU 2023 Recent development of machine learning models for the prediction of drug-drug interactions. Korean Journal of Chemical Engineering 40 276285. (https://doi.org/10.1007/s11814-023-1377-3).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim H, El Kerdawy AM, Abdo A & & Eldin AS 2021 Similarity-based machine learning framework for predicting safety signals of adverse drug–drug interactions. Informatics in Medicine Unlocked 26. (https://doi.org/10.1016/j.imu.2021.100699).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaiswal S 2024 Multilayer perceptrons in machine learning: a comprehensive guide. Data Camp. Available at: (https://www.datacamp.com/tutorial/multilayer-perceptrons-in-machine-learning).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jansson T 2018 Placental transfer. In Encyclopedia of Reproduction (2nd ed., Vol. 2). (https://doi.org/10.1016/B978-0-12-801238-3.64682-2).

  • Josey KP, Nethery RC, Visaria A, Bates B, Gandhi P & & Parthasarathi A Melanie rua, David Robinson, & Soko Setoguchi 2023. A retrospective cohort study investigating synergism of air pollution and corticosteroid exposure in promoting cardiovascular and thromboembolic events in older adults. medRxiv, 2022.12.15.22283489. (https://doi.org/10.1101/2022.12.15.22283489).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karaduman G & & Kelleci Celik F 2023 2D-quantitative structure–activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy. Journal of Applied Toxicology 43 14361446. (https://doi.org/10.1002/jat.4475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaufman MR, Eschliman EL & & Karver TS 2023 Differentiating sex and gender in health research to achieve gender equity. Bulletin of the World Health Organization 101 666671. (https://doi.org/10.2471/BLT.22.289310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelleci Celik F & & Karaduman G 2023 In silico QSAR modeling to predict the safe use of antibiotics during pregnancy. Drug and Chemical Toxicology 46 962971. (https://doi.org/10.1080/01480545.2022.2113888)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kotta-Loizou I, Pritsa A, Antasouras G, Vasilopoulos SN, Voulgaridou G, Papadopoulou SK, Coutts RHA, Lechouritis E & & Giaginis C 2024 Fetus exposure to drugs and chemicals: a holistic overview on the assessment of their transport and metabolism across the human placental barrier. Diseases 12. (https://doi.org/10.3390/diseases12060114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leveque L, Tahiri N, Goldsmith M-R & & Verner M-A 2022 Quantitative structure-activity relationship (QSAR) modeling to predict the transfer of environmental chemicals across the placenta. Computational Toxicology 21. (https://doi.org/10.1016/j.comtox.2021.100211)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J, Sun X, Xu J, Tan H, Zeng EY & & Chen D 2021 Transplacental transfer of environmental chemicals: roles of molecular descriptors and placental transporters. Environmental Science and Technology 55 519528. (https://doi.org/10.1021/acs.est.0c06778)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linden A, Yarnold PR & & Nallamothu BK 2016 Using machine learning to model dose-response relationships. Journal of Evaluation in Clinical Practice 22 856863. (https://doi.org/10.1111/jep.12573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu J, Lu D, Zhang X, Bi Y, Cheng K, Zheng M & & Luo X 2016 Estimation of elimination half-lives of organic chemicals in humans using gradient boosting machine. Biochimica et Biophysica Acta 1860 26642671. (https://doi.org/10.1016/j.bbagen.2016.05.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madden JC, Enoch SJ, Paini A & & Cronin MTD 2020 A review of in silico tools as alternatives to animal testing: principles, resources and applications. Alternatives to Laboratory Animals 48 146172. (https://doi.org/10.1177/0261192920965977)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maltepe E & & Fisher SJ 2015 Placenta: the forgotten organ. Annual Review of Cell and Developmental Biology 31 523552. (https://doi.org/10.1146/annurev-cellbio-100814-125620)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin T 2020 User’s guide for T.E.S.T. (toxicity estimation software tool) version 5.1: a java application to estimate toxicities and physical properties from Molecular Structure. U.S. Environmental Protection Agency. Chrome-Extension://efaidnbmnnnibpcajpcglclefindmkaj. Available at: (https://www.epa.gov/sites/default/files/2016-05/documents/600r16058.pdf).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mauri A 2020 alvaDesc: a tool to calculate and analyze molecular descriptors and fingerprints. In Ecotoxicological QSARs. Roy K Ed.: US: Springer, pp. 801820. (https://doi.org/10.1007/978-1-0716-0150-1_32).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Michel ME, Wen CC, Yee SW, Giacomini KM, Hamdoun A & & Nicklisch SCT 2023 TICBase: integrated resource for data on drug and environmental chemical interactions with mammalian drug transporters. Clinical Pharmacology and Therapeutics 114 12931303. (https://doi.org/10.1002/cpt.3036).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Narkhede S 2018 Understanding AUC-ROC curve. Towards Data Science. Available at: (https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5).

  • National Institutes of Health: Office of Research on Women’s Health n.d. What are sex & gender? And Why do They Matter in Health Research? Sex & Gender. Available at: (https://orwh.od.nih.gov/sex-gender).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nti IK, Nyarko-Boateng O & & Aning J 2021 Performance of machine learning algorithms with different K values in K-fold cross-validation. International Journal of Information Technology and Computer Science 13 6171. (https://doi.org/10.5815/ijitcs.2021.06.05).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T & & Hutchison GR 2011 Open Babel: an open chemical toolbox. Journal of Cheminformatics 3. (https://doi.org/10.1186/1758-2946-3-33).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • OECD 2007 Guidance document on the validation of quantitative structure activity relationship QSAR models. (OECD Series on Testing and Assessment). Available at: (https://www.oecd.org/content/dam/oecd/en/publications/reports/2014/09/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models_g1ghcc68/9789264085442-en.pdf).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orosz Á, Heberger K & & Racz A 2022 Comparison of descriptor- and fingerprint sets in machine learning models for ADME-Tox targets. Frontiers in Chemistry 10 852893. (https://doi.org/10.3389/fchem.2022.852893).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pantic I, Paunovic J, Cumic J, Valjarevic S, Petroianu GA & & Corridon PR 2023 Artificial neural networks in contemporary toxicology research. Chemico-Biological Interactions 369 110269. (https://doi.org/10.1016/j.cbi.2022.110269).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K & & Tekade RK 2021 Artificial intelligence in drug discovery and development. Drug Discovery Today 26 8093. (https://doi.org/10.1016/j.drudis.2020.10.010).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rager JE, Bangma J, Carberry C, Chao A, Grossman J, Lu K, Manuck TA, Sobus JR, Szilagyi J & & Fry RC 2020 Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reproductive Toxicology 98 112. (https://doi.org/10.1016/j.reprotox.2020.02.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • RDKit n.d. [Computer software]. (https://www.rdkit.org/)

  • Rebala G, Ravi A & & Churiwala S 2019 Machine learning definition and basics. In An Introduction to Machine Learning: Springer. (https://doi.org/10.1007/978-3-030-15729-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roy K & & Kar S 2015 How to judge predictive quality of classification and regression based QSAR models? In Frontiers in Computational Chemistry. Bentham Science Publishers, pp. 71120. (https://doi.org/10.1016/B978-1-60805-979-9.50003-2).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roy K, Kar S & & Ambure P 2015 On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems 145 2229. (https://doi.org/10.1016/j.chemolab.2015.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sand KMK, Gruber MM, Sandlie I, Mathiesen L, Andersen JT & & Wadsack C 2022 Contribution of the ex vivo placental perfusion model in understanding transplacental immunoglobulin G transfer. Placenta 127 7787. (https://doi.org/10.1016/j.placenta.2022.07.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santosh K, Das N & & Ghosh S 2022. Introduction. In Deep Learning Models for Medical Imaging (Primers in Biomedical Imaging Devices and Systems). Academic Press, pp. 127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schoots MH, Gordijn SJ, Scherjon SA, van Goor H & & Hillebrands J-L 2018 Oxidative stress in placental pathology. Placenta 69 153161. (https://doi.org/10.1016/j.placenta.2018.03.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sewell CA, Sheehan SM, Gill MS, Henry LM, Bucci-Rechtweg C, Hyamfi-Bannerman C, Lyerly AD, McKinney LC, Hatfield KP & Baer GR , et al.2022 Scientific, ethical, and legal considerations for the inclusion of pregnant people in clinical trials. American Journal of Obstetrics and Gynecology 227 805811. (https://doi.org/10.1016/j.ajog.2022.07.037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheridan RP 2013 Time-split cross-validation as a method for estimating the goodness of prospective prediction. Journal of Chemical Information and Modeling 53 783790. (https://doi.org/10.1021/ci400084k)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simmons D 2015 Safety considerations with pharmacological treatment of gestational diabetes mellitus. Drug Safety 38 6578. (https://doi.org/10.1007/s40264-014-0253-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stahlmann R & & Horvath A 2015 Risks, risk assessment and risk competence in toxicology. German Medical Science : GMS E-Journal 13 Doc09. (https://doi.org/10.3205/000213)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steinbeck C, Han Y, Horlacker O, Luttmann E & & Willighagen E 2003 The chemistry development kit (CDK): an open-source java library for chemo-and bioinformatics. Journal of Chemical Information and Computer Sciences 43 493500. (https://doi.org/10.1021/ci025584y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang S, Sun X, Qiao X, Cui W, Yu F, Zeng X, Covaci A & & Chen D 2022 Prenatal exposure to emerging plasticizers and synthetic antioxidants and their potency to cross human placenta. Environmental Science and Technology 56 85078517. (https://doi.org/10.1021/acs.est.2c01141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • CRC Press by Taylor and Francis Group, LLC. Available at: (https://www.taylorfrancis.com/chapters/edit/10.1201/9781482296945-13/molecular-connectivity-chi-indices-database-analysis-structure-property-modeling-hall-kier).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV & Zefirov NS , et al.2005 Virtual Computational Chemistry Laboratory—Design and Description (VCCLAB) (Computer software). (https://vcclab.org).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • U.S. Food and Drug Administration 2008. Content and Format of Labelling for Human Prescription Drug and Biological Products; Requirements for Pregnancy and Lactation Labeling. Federal Registrar 73. (https://chemm.hhs.gov/pregnancycategories.htm).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vargesson N 2015 Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Research. Part C, Embryo Today: Reviews 105 140156. (https://doi.org/10.1002/bdrc.21096)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang MWH, Goodman JM & & Allen TEH 2021 Machine learning in predictive toxicology: recent applications and future directions for classification models. Chemical Research in Toxicology 34 217239. (https://doi.org/10.1021/acs.chemrestox.0c00316)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yap CW 2011 PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry 32 14661474. (https://doi.org/10.1002/jcc.21707).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang H, Mao J, Qi H-Z & & Ding L 2020 In silico prediction of drug-induced developmental toxicity by using machine learning approaches. Molecular Diversity 24 12811290. (https://doi.org/10.1007/s11030-019-09991-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao H, Lai Z, Leung H & & Zhang X 2020 Linear discriminant analysis. In Feature Learning and Understanding. Information Fusion and Data Science, pp. 7185. (https://doi.org/10.1007/978-3-030-40794-0_5).

    • PubMed
    • Search Google Scholar
    • Export Citation