This paper forms part of a special series on the Impact of Real-Life Environmental Exposures on Reproduction. The Guest Editors for this special series were Professor Jodi A Flaws (University of Illinois, IL, USA) and Professor Emerita (in service) Vasantha Padmanabhan (University of Michigan, MI, USA).
Clinical drug trials often do not include pregnant people due to health risks; therefore, many medications have an unknown effect on the developing fetus. Machine learning QSAR models have been used successfully to predict the fetal risk of pharmaceutical use during pregnancy.
Those undergoing pregnancy are often excluded from clinical drug trials due to the risk that participation would pose to their health and the health of the developing fetus. However, they often require pharmaceuticals to manage health conditions that, if left untreated, could harm themselves or the fetus. This can mean that such individuals take one or more pharmaceuticals during pregnancy, many of which have unknown reproductive effects. Machine learning models have been used to successfully predict a number of reproductive toxicological outcomes for pharmaceuticals, including transplacental transfer, US Food and Drug Administration safety rating, and drug interactions. Models use quantitative chemical and structural features of active compounds as inputs to make predictions concerning the outcome of interest using computational algorithms. Models are validated and evaluated rigorously with metrics such as accuracy, area under the receiver operator curve, sensitivity, and precision. Results from these models can be a potential source of valuable information for pregnant people and their medical providers when making decisions regarding therapeutic drug use. This review summarizes current machine learning applications to make predictions about the risk and toxicity of medication use during pregnancy. Our review of the recent literature revealed that machine learning quantitative structure-activity relationship models can be used successfully to predict the transplacental transfer and the US Food and Drug Administration pregnancy safety category of pharmaceuticals; such models have also been employed to predict drug interactions, though not specifically during pregnancy. This latter topic is a potential area for future research. In this review, no single algorithm or descriptor-calculation software emerged as the most widely used, and their performances depend on a variety of factors, including the outcome of interest and combination of such algorithms and software.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 26 | 26 | 18 |
PDF Downloads | 26 | 26 | 18 |