IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Phthalates disrupt female reproductive health: a call for enhanced investigation into mixtures

in Reproduction
Authors:
Katie L Land Department of Obstetrics & Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA

Search for other papers by Katie L Land in
Current site
Google Scholar
PubMed
Close
,
Sundus M Ghuneim Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA

Search for other papers by Sundus M Ghuneim in
Current site
Google Scholar
PubMed
Close
,
Brittney A Williams Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA

Search for other papers by Brittney A Williams in
Current site
Google Scholar
PubMed
Close
, and
Patrick R Hannon Department of Obstetrics & Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA

Search for other papers by Patrick R Hannon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0008-3097-2309

Correspondence should be addressed to P R Hannon: patrick.hannon@uky.edu

(K L Land, S M Ghuneim and B A Williams contributed equally to this work)

This paper forms part of a special series on the Impact of Real-Life Environmental Exposures on Reproduction. The Guest Editors for this special series are Professor Jodi A Flaws (University of Illinois, IL, USA) and Professor Emerita (in service) Vasantha Padmanabhan (University of Michigan, MI, USA)

Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Exposure to phthalates, known endocrine-disrupting chemicals (EDCs), is ubiquitous, but the effects on women’s reproductive health are largely unknown. This review summarizes the literature investigating associations between phthalate exposures and clinical reproductive outcomes and reproductive disease states in women, and it emphasizes the need to investigate the effects of phthalate mixtures on women’s reproductive health.

Abstract

Daily exposure to a mixture of phthalates is unavoidable in humans and poses a risk to reproductive health because they are known EDCs. Specific to female reproductive health, the literature has linked phthalate exposure to impairments in ovarian function, uterine function, pregnancy outcomes and endocrine signaling in the hypothalamic–pituitary–ovarian axis. However, limitations of these studies are that they primarily focus on single-phthalate exposures in animal models. Thus, the effects of real-life exposures to mixtures of phthalates and the clinical and translational impacts on reproductive function in women are largely unknown. This review summarizes the recent literature specifically investigating associations between phthalate mixture exposures and clinical reproductive outcomes and reproductive disease states in women. Because these studies are scarce, they are supplemented with the literature utilizing single-phthalate analyses in women and mechanistic basic science studies using phthalate mixture exposures. Main findings from the literature suggest that elevated phthalate exposure is associated with altered menstrual cyclicity, altered pubertal timing, disrupted ovarian folliculogenesis and steroidogenesis, ovarian disorders including primary ovarian insufficiency and polycystic ovary syndrome, uterine disorders including endometriosis and leiomyomas, poor in vitro fertilization outcomes and poor pregnancy outcomes. There is an urgent need to better incorporate phthalate mixtures in epidemiology (mixture analyses) and basic science (direct exposures) study designs. Furthermore, as exposure to multiple phthalates is ubiquitous, elucidating the mechanism of phthalate mixture toxicities is paramount for improving women’s reproductive health.

Supplementary Materials

 

  • Collapse
  • Expand
  • Adam N, Brusamonti L & Mhaouty-Kodja S 2021 Exposure of adult female mice to low doses of di(2-ethylhexyl) phthalate alone or in an environmental phthalate mixture: evaluation of reproductive behavior and underlying neural mechanisms. Environ Health Perspect 129 17008. (https://doi.org/10.1289/ehp7662)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adams-Chapman I, Heyne RJ, DeMauro SB, et al. 2018 Neurodevelopmental impairment among extremely preterm infants in the neonatal research network. Pediatrics 141 e20173091. (https://doi.org/10.1542/peds.2017-3091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Al-Saleh I 2022 The relationship between urinary phthalate metabolites and polycystic ovary syndrome in women undergoing in vitro fertilization: nested case-control study. Chemosphere 286 131495. (https://doi.org/10.1016/j.chemosphere.2021.131495)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Al-Saleh I, Coskun S, Al-Doush I, et al. 2019 Exposure to phthalates in couples undergoing in vitro fertilization treatment and its association with oxidative stress and DNA damage. Environ Res 169 396408. (https://doi.org/10.1016/j.envres.2018.11.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beck AL, Rehfeld A, Mortensen LJ, et al. 2024 Ovarian follicular fluid levels of phthalates and benzophenones in relation to fertility outcomes. Environ Int 183 108383. (https://doi.org/10.1016/j.envint.2023.108383)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bedenk J, Vrtačnik-Bokal E & Virant-Klun I 2020 The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J Assist Reprod Genet 37 89100. (https://doi.org/10.1007/s10815-019-01622-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Begum TF, Fujimoto VY, Gerona R, et al. 2021 A pilot investigation of couple-level phthalates exposure and in vitro fertilization (IVF) outcomes. Reprod Toxicol 99 5664. (https://doi.org/10.1016/j.reprotox.2020.11.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berger K, Eskenazi B, Kogut K, et al. 2018 Association of prenatal urinary concentrations of phthalates and bisphenol A and pubertal timing in boys and girls. Environ Health Perspect 126 97004. (https://doi.org/10.1289/ehp3424)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Binder AM, Corvalan C, Calafat AM, et al. 2018 Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls. Environ Health 17 32. (https://doi.org/10.1186/s12940-018-0376-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bloch D, Diel P, Epe B, et al. 2023 Basic concepts of mixture toxicity and relevance for risk evaluation and regulation. Arch Toxicol 97 30053017. (https://doi.org/10.1007/s00204-023-03565-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bobb JF, Valeri L, Claus Henn B, et al. 2015 Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16 493508. (https://doi.org/10.1093/biostatistics/kxu058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bobb JF, Claus Henn B, Valeri L, et al. 2018 Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Health 17 67. (https://doi.org/10.1186/s12940-018-0413-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boss J, Rix A, Chen YH, et al. 2021 A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures. Environmetrics 32 e2698. (https://doi.org/10.1002/env.2698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brehm E & Flaws JA 2021 Prenatal exposure to a mixture of phthalates accelerates the age-related decline in reproductive capacity but may not affect direct biomarkers of ovarian aging in the F1 generation of female mice. Environ Epigenet 7 dvab010. (https://doi.org/10.1093/eep/dvab010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brehm E, Zhou C, Gao L, et al. 2020 Prenatal exposure to an environmentally relevant phthalate mixture accelerates biomarkers of reproductive aging in a multiple and transgenerational manner in female mice. Reprod Toxicol 98 260268. (https://doi.org/10.1016/j.reprotox.2020.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buck Louis GM, Peterson CM, Chen Z, et al. 2013 Bisphenol A and phthalates and endometriosis: the endometriosis: natural history, diagnosis and outcomes study. Fertil Steril 100 162169.e2 e1-2. (https://doi.org/10.1016/j.fertnstert.2013.03.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bulun SE 2009 Endometriosis. N Engl J Med 360 268279. (https://doi.org/10.1056/nejmra0804690)

  • Bulun SE, Yilmaz BD, Sison C, et al. 2019 Endometriosis. Endocr Rev 40 10481079. (https://doi.org/10.1210/er.2018-00242)

  • Buttke DE, Sircar K & Martin C 2012 Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ Health Perspect 120 16131618. (https://doi.org/10.1289/ehp.1104748)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cai W, Yang J, Liu Y, et al. 2019 Association between phthalate metabolites and risk of endometriosis: a meta-analysis. Int J Environ Res Public Health 16 3678. (https://doi.org/10.3390/ijerph16193678)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao M, Pan W, Shen X, et al. 2020 Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones. Chemosphere 242 125206. (https://doi.org/10.1016/j.chemosphere.2019.125206)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casas M, Valvi D, Ballesteros-Gomez A, et al. 2016 Exposure to bisphenol A and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-sabadell cohort. Environ Health Perspect 124 521528. (https://doi.org/10.1289/ehp.1409190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caserta D, Costanzi F, De Marco MP, et al. 2021 Effects of endocrine-disrupting chemicals on endometrial receptivity and embryo implantation: a systematic review of 34 mouse model studies. Int J Environ Res Public Health 18 6840. (https://doi.org/10.3390/ijerph18136840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cathey A, Watkins DJ, Sánchez BN, et al. 2020 Onset and tempo of sexual maturation is differentially associated with gestational phthalate exposure between boys and girls in a Mexico City birth cohort. Environ Int 136 105469. (https://doi.org/10.1016/j.envint.2020.105469)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CY, Chou YY, Wu YM, et al. 2013 Phthalates may promote female puberty by increasing kisspeptin activity. Hum Reprod 28 27652773. (https://doi.org/10.1093/humrep/det325)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choe J & Shanks AL 2024 In vitro fertilization. In StatPearls. Treasure Island (FL): StatPearls Publishing LLC.

  • Cobellis L, Latini G, De Felice C, et al. 2003 High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Hum Reprod 18 15121515. (https://doi.org/10.1093/humrep/deg254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Colaco S & Sakkas D 2018 Paternal factors contributing to embryo quality. J Assist Reprod Genet 35 19531968. (https://doi.org/10.1007/s10815-018-1304-4)

  • Colón I, Caro D, Bourdony CJ, et al. 2000 Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect 108 895900. (https://doi.org/10.2307/3434999)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coull BA, Bobb JF, Wellenius GA, et al. 2015 Part 1. Statistical learning methods for the effects of multiple air pollution constituents. Res Rep Health Eff Inst 183 550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng T, Du Y, Wang Y, et al. 2020 The associations of urinary phthalate metabolites with the intermediate and pregnancy outcomes of women receiving IVF/ICSI treatments: a prospective single-center study. Ecotoxicol Environ Saf 188 109884. (https://doi.org/10.1016/j.ecoenv.2019.109884)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dimitriadis E, Menkhorst E, Saito S, et al. 2020 Recurrent pregnancy loss. Nat Rev Dis Primers 6 98. (https://doi.org/10.1038/s41572-020-00228-z)

  • Ding N, Zheutlin E, Harlow SD, et al. 2023 Associations between repeated measures of urinary phthalate metabolites with hormones and timing of natural menopause. J Endocr Soc 7 bvad024. (https://doi.org/10.1210/jendso/bvad024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du YY, Fang YL, Wang YX, et al. 2016 Follicular fluid and urinary concentrations of phthalate metabolites among infertile women and associations with in vitro fertilization parameters. Reprod Toxicol 61 142150. (https://doi.org/10.1016/j.reprotox.2016.04.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du Y, Guo N, Wang Y, et al. 2019 Follicular fluid concentrations of phthalate metabolites are associated with altered intrafollicular reproductive hormones in women undergoing in vitro fertilization. Fertil Steril 111 953961. (https://doi.org/10.1016/j.fertnstert.2019.01.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferguson KK, McElrath TF, Ko YA, et al. 2014 Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int 70 118124. (https://doi.org/10.1016/j.envint.2014.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferguson KK, Meeker JD, Cantonwine DE, et al. 2016 Urinary phthalate metabolite and bisphenol A associations with ultrasound and delivery indices of fetal growth. Environ Int 94 531537. (https://doi.org/10.1016/j.envint.2016.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferguson KK, Rosen EM, Rosario Z, et al. 2019 Environmental phthalate exposure and preterm birth in the PROTECT birth cohort. Environ Int 132 105099. (https://doi.org/10.1016/j.envint.2019.105099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrari F & Dunson DB 2021 Bayesian factor analysis for inference on interactions. J Am Stat Assoc 116 15211532. (https://doi.org/10.1080/01621459.2020.1745813)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Filardi T, Panimolle F, Lenzi A, et al. 2020 Bisphenol A and phthalates in diet: an emerging link with pregnancy complications. Nutrients 12 525. (https://doi.org/10.3390/nu12020525)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fletcher EJ, Santacruz-Márquez R, Mourikes VE, et al. 2022 Effects of Phthalate Mixtures on Ovarian Folliculogenesis and Steroidogenesis. Toxics 10 251. (https://doi.org/10.3390/toxics10050251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frederiksen H, Sørensen K, Mouritsen A, et al. 2012 High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35 216226. (https://doi.org/10.1111/j.1365-2605.2012.01260.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freire C, Castiello F, Lopez-Espinosa MJ, et al. 2022 Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. Environ Res 213 113606. (https://doi.org/10.1016/j.envres.2022.113606)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fruh V, Claus Henn B, Weuve J, et al. 2021 Incidence of uterine leiomyoma in relation to urinary concentrations of phthalate and phthalate alternative biomarkers: a prospective ultrasound study. Environ Int 147 106218. (https://doi.org/10.1016/j.envint.2020.106218)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fu Z, Zhao F, Chen K, et al. 2017 Association between urinary phthalate metabolites and risk of breast cancer and uterine leiomyoma. Reprod Toxicol 74 134142. (https://doi.org/10.1016/j.reprotox.2017.09.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Génard-Walton M, McGee G, Williams PL, et al. 2023 Mixtures of urinary concentrations of phenols and phthalate biomarkers in relation to the ovarian reserve among women attending a fertility clinic. Sci Total Environ 898 165536. (https://doi.org/10.1016/j.scitotenv.2023.165536)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Georgadaki K, Khoury N, Spandidos DA, et al. 2016 The molecular basis of fertilization (Review). Int J Mol Med 38 979986. (https://doi.org/10.3892/ijmm.2016.2723)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gore AC, Chappell VA, Fenton SE, et al. 2015 EDC-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36 E1E150. (https://doi.org/10.1210/er.2015-1010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grindler NM, Allsworth JE, Macones GA, et al. 2015 Persistent organic pollutants and early menopause in U.S. women. PLoS One 10 e0116057. (https://doi.org/10.1371/journal.pone.0116057)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hannon PR & Flaws JA 2015 The effects of phthalates on the ovary. Front Endocrinol 6 8. (https://doi.org/10.3389/fendo.2015.00008)

  • Hannon PR, Akin JW & Curry TE Jr 2023 Exposure to a phthalate mixture disrupts ovulatory progesterone receptor signaling in human granulosa cells in vitro†. Biol Reprod 109 552565. (https://doi.org/10.1093/biolre/ioad091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hauser R, Gaskins AJ, Souter I, et al. 2016 Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the EARTH study. Environ Health Perspect 124 831839. (https://doi.org/10.1289/ehp.1509760)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He J, Chang K, Liu S, et al. 2021 Phthalate levels in urine of pregnant women and their associated missed abortion risk. Reprod Biol 21 100476. (https://doi.org/10.1016/j.repbio.2020.100476)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henderson J, Carson C & Redshaw M 2016 Impact of preterm birth on maternal well-being and women's perceptions of their baby: a population-based survey. BMJ Open 6 e012676. (https://doi.org/10.1136/bmjopen-2016-012676)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heudorf U, Mersch-Sundermann V & Angerer J 2007 Phthalates: toxicology and exposure. Int J Hyg Environ Health 210 623634. (https://doi.org/10.1016/j.ijheh.2007.07.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hogberg J, Hanberg A, Berglund M, et al. 2008 Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect 116 334339. (https://doi.org/10.1289/ehp.10788)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu W, Jin Z, Wang H, et al. 2024 Relationship between phthalates exposure, risk of decreased ovarian reserve, and oxidative stress levels. Toxicol Ind Health 40 156166. (https://doi.org/10.1177/07482337241229761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang PC, Tsai EM, Li WF, et al. 2010 Association between phthalate exposure and glutathione S-transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis. Hum Reprod 25 986994. (https://doi.org/10.1093/humrep/deq015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Humberg A, Fortmann I, Siller B, et al. 2020 Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 42 451468. (https://doi.org/10.1007/s00281-020-00803-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Itoh H, Iwasaki M, Hanaoka T, et al. 2009 Urinary phthalate monoesters and endometriosis in infertile Japanese women. Sci Total Environ 408 3742. (https://doi.org/10.1016/j.scitotenv.2009.09.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin Y, Zhang Q, Pan JX, et al. 2019 The effects of di(2-ethylhexyl) phthalate exposure in women with polycystic ovary syndrome undergoing in vitro fertilization. J Int Med Res 47 62786293. (https://doi.org/10.1177/0300060519876467)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jukic AM, Calafat AM, McConnaughey DR, et al. 2016 Urinary concentrations of phthalate metabolites and bisphenol A and associations with follicular-phase length, luteal-phase length, fecundability, and early pregnancy loss. Environ Health Perspect 124 321328. (https://doi.org/10.1289/ehp.1408164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kasper-Sonnenberg M, Wittsiepe J, Wald K, et al. 2017 Pre-pubertal exposure with phthalates and bisphenol A and pubertal development. PLoS One 12 e0187922. (https://doi.org/10.1371/journal.pone.0187922)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khandre V, Potdar J & Keerti A 2022 Preterm birth: an overview. Cureus 14 e33006. (https://doi.org/10.7759/cureus.33006)

  • Kim SH, Chun S, Jang JY, et al. 2011 Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril 95 357359. (https://doi.org/10.1016/j.fertnstert.2010.07.1059)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim YA, Kho Y, Chun KC, et al. 2016 Increased urinary phthalate levels in women with uterine leiomyoma: a case-control study. Int J Environ Res Public Health 13 1247. (https://doi.org/10.3390/ijerph13121247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim JH, Kim SH, Oh YS, et al. 2017 In vitro effects of phthalate esters in human myometrial and leiomyoma cells and increased urinary level of phthalate metabolite in women with uterine leiomyoma. Fertil Steril 107 10611069.e1. (https://doi.org/10.1016/j.fertnstert.2017.01.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koch HM & Calafat AM 2009 Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci 364 20632078. (https://doi.org/10.1098/rstb.2008.0208)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krotz SP, Carson SA, Tomey C, et al. 2012 Phthalates and bisphenol do not accumulate in human follicular fluid. J Assist Reprod Genet 29 773777. (https://doi.org/10.1007/s10815-012-9775-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lalwani S, Reindollar RH & Davis AJ 2003 Normal onset of puberty. Obstet Gynecol Clin North Am 30 279286. (https://doi.org/10.1016/s0889-8545(03)00025-1)

  • Land KL, Lane ME, Fugate AC, et al. 2021 Ovulation is inhibited by an environmentally relevant phthalate mixture in mouse antral follicles in vitro. Toxicol Sci 179 195205. (https://doi.org/10.1093/toxsci/kfaa170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Land KL, Miller FG, Fugate AC, et al. 2022 The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 89 608631. (https://doi.org/10.1002/mrd.23652)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latini G, De Felice C, Presta G, et al. 2003 In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect 111 17831785. (https://doi.org/10.1289/ehp.6202)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latini G, Del Vecchio A, Massaro M, et al. 2006 In utero exposure to phthalates and fetal development. Curr Med Chem 13 25272534. (https://doi.org/10.2174/092986706778201666)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee KS, Joo BS, Na YJ, et al. 2000 Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. J Assist Reprod Genet 17 222228. (https://doi.org/10.1023/a:1009495913119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee J, Jeong Y, Mok S, et al. 2020 Associations of exposure to phthalates and environmental phenols with gynecological disorders. Reprod Toxicol 95 1928. (https://doi.org/10.1016/j.reprotox.2020.04.076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li K, Liszka M, Zhou C, et al. 2020 Prenatal exposure to a phthalate mixture leads to multigenerational and transgenerational effects on uterine morphology and function in mice. Reprod Toxicol 93 178190. (https://doi.org/10.1016/j.reprotox.2020.02.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Yao Y, Xiao N, et al. 2022 The association of serum phthalate metabolites with biomarkers of ovarian reserve in women of childbearing age. Ecotoxicol Environ Saf 242 113909. (https://doi.org/10.1016/j.ecoenv.2022.113909)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J, Deng T, Rao W, et al. 2024 Phthalate metabolites in urine and follicular fluid in relation to menstrual cycle characteristics in women seeking fertility assistance. Environ Int 183 108362. (https://doi.org/10.1016/j.envint.2023.108362)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao KW, Kuo PL, Huang HB, et al. 2018 Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive-aged women. Environ Pollut 241 969977. (https://doi.org/10.1016/j.envpol.2018.06.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Machtinger R, Gaskins AJ, Racowsky C, et al. 2018 Urinary concentrations of biomarkers of phthalates and phthalate alternatives and IVF outcomes. Environ Int 111 2331. (https://doi.org/10.1016/j.envint.2017.11.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marie C, Vendittelli F & Sauvant-Rochat M-P 2015 Obstetrical outcomes and biomarkers to assess exposure to phthalates: a review. Environ Int 83 116136. (https://doi.org/10.1016/j.envint.2015.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marsee K, Woodruff TJ, Axelrad DA, et al. 2006 Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environ Health Perspect 114 805809. (https://doi.org/10.1289/ehp.8663)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, et al. 2024 Impact of DEHP exposure on female reproductive health: insights into uterine effects. Environ Toxicol Pharmacol 107 104391. (https://doi.org/10.1016/j.etap.2024.104391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meeker JD, Hu H, Cantonwine DE, et al. 2009 Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect 117 15871592. (https://doi.org/10.1289/ehp.0800522)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meling DD, Warner GR, Szumski JR, et al. 2020 The effects of a phthalate metabolite mixture on antral follicle growth and sex steroid synthesis in mice. Toxicol Appl Pharmacol 388 114875. (https://doi.org/10.1016/j.taap.2019.114875)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Messerlian C, Souter I, Gaskins AJ, et al. 2016 Urinary phthalate metabolites and ovarian reserve among women seeking infertility care. Hum Reprod 31 7583. (https://doi.org/10.1093/humrep/dev292)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller JE, Hammond GC, Strunk T, et al. 2016 Association of gestational age and growth measures at birth with infection-related admissions to hospital throughout childhood: a population-based, data-linkage study from Western Australia. Lancet Infect Dis 16 952961. (https://doi.org/10.1016/s1473-3099(16)00150-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mínguez-Alarcón L, Messerlian C, Bellavia A, et al. 2019 Urinary concentrations of bisphenol A, parabens and phthalate metabolite mixtures in relation to reproductive success among women undergoing in vitro fertilization. Environ Int 126 355362. (https://doi.org/10.1016/j.envint.2019.02.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreira Fernandez MA, Cardeal ZL, Carneiro MM, et al. 2019 Study of possible association between endometriosis and phthalate and bisphenol A by biomarkers analysis. J Pharm Biomed Anal 172 238242. (https://doi.org/10.1016/j.jpba.2019.04.048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mourikes VE & Flaws JA 2021 Reproductive toxicology: effects of chemical mixtures on the ovary. Reproduction 162 F91F100. (https://doi.org/10.1530/rep-20-0587)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mouritsen A, Frederiksen H, Sørensen K, et al. 2013 Urinary phthalates from 168 girls and boys measured twice a year during a 5-year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab 98 37553764. (https://doi.org/10.1210/jc.2013-1284)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Narisetty NN, Mukherjee B, Chen YH, et al. 2019 Selection of nonlinear interactions by a forward stepwise algorithm: application to identifying environmental chemical mixtures affecting health outcomes. Stat Med 38 15821600. (https://doi.org/10.1002/sim.8059)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nazir S, Usman Z, Imran M, et al. 2018 Women diagnosed with endometriosis show high serum levels of diethyl hexyl phthalate. J Hum Reprod Sci 11 131136. (https://doi.org/10.4103/jhrs.jhrs_137_17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nobles CJ, Mendola P, Kim K, et al. 2023 Preconception phthalate exposure and women’s reproductive health: pregnancy, pregnancy loss, and underlying mechanisms. Environ Health Perspect 131 127013. (https://doi.org/10.1289/ehp12287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Özel Ş, Tokmak A, Aykut O, et al. 2019 Serum levels of phthalates and bisphenol-A in patients with primary ovarian insufficiency. Gynecol Endocrinol 35 364367. (https://doi.org/10.1080/09513590.2018.1534951)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pacyga DC, Ryva BA, Nowak RA, et al. 2022 Midlife urinary phthalate metabolite concentrations and prior uterine fibroid diagnosis. Int J Environ Res Public Health 19 2741. (https://doi.org/10.3390/ijerph19052741)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parikh FR, Uttamchandani S, Sawkar S, et al. 2024 The impact of follicular fluid phthalate metabolites on the ovarian reserve and ovarian function in Indian women undergoing intracytoplasmic sperm injection. F S Sci 5 107120. (https://doi.org/10.1016/j.xfss.2023.11.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park DW & Yang KM 2011 Hormonal regulation of uterine chemokines and immune cells. Clin Exp Reprod Med 38 179185. (https://doi.org/10.5653/cerm.2011.38.4.179)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patiño-García D, Cruz-Fernandes L, Buñay J, et al. 2018 Reproductive alterations in chronically exposed female mice to environmentally relevant doses of a mixture of phthalates and alkylphenols. Endocrinology 159 10501061. (https://doi.org/10.1210/en.2017-00614)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pednekar PP, Gajbhiye RK, Patil AD, et al. 2018 Estimation of plasma levels of bisphenol-A & phthalates in fertile & infertile women by gas chromatography–mass spectrometry. Indian J Med Res 148 734742. (https://doi.org/10.4103/ijmr.ijmr_2077_16)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pollack AZ, Buck Louis GM, Chen Z, et al. 2015 Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environ Res 137 101107. (https://doi.org/10.1016/j.envres.2014.06.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Radke EG, Glenn BS, Braun JM, et al. 2019 Phthalate exposure and female reproductive and developmental outcomes: a systematic review of the human epidemiological evidence. Environ Int 130 104580. (https://doi.org/10.1016/j.envint.2019.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reddy BS, Rozati R, Reddy BV, et al. 2006 General gynaecology: association of phthalate esters with endometriosis in Indian women. BJOG 113 515520. (https://doi.org/10.1111/j.1471-0528.2006.00925.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ryan GL, Syrop CH & Van Voorhis BJ 2005 Role, epidemiology, and natural history of benign uterine mass lesions. Clin Obstet Gynecol 48 312324. (https://doi.org/10.1097/01.grf.0000159538.27221.8c)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Safar AM, Santacruz-Márquez R, Laws MJ, et al. 2023 Dietary exposure to an environmentally relevant phthalate mixture alters follicle dynamics, hormone levels, ovarian gene expression, and pituitary gene expression in female mice. Reprod Toxicol 122 108489. (https://doi.org/10.1016/j.reprotox.2023.108489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva MJ, Barr DB, Reidy JA, et al. 2004 Urinary levels of seven phthalate metabolites in the U.S. Population from the National health and Nutrition Examination survey (NHANES) 1999–2000. Environ Health Perspect 112 331338. (https://doi.org/10.1289/ehp.6723)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smarr MM, Grantz KL, Sundaram R, et al. 2015 Parental urinary biomarkers of preconception exposure to bisphenol A and phthalates in relation to birth outcomes. Environ Health 14 73. (https://doi.org/10.1186/s12940-015-0060-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sopiarz N & Sparzak PB 2024 Primary ovarian insufficiency. In StatPearls. Treasure Island (FL): StatPearls Publishing LLC.

  • Srilanchakon K, Thadsri T, Jantarat C, et al. 2017 Higher phthalate concentrations are associated with precocious puberty in normal weight Thai girls. J Pediatr Endocrinol Metab 30 12931298. (https://doi.org/10.1515/jpem-2017-0281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stewart EA 2001 Uterine fibroids. Lancet 357 293298. (https://doi.org/10.1016/s0140-6736(00)03622-9)

  • Stewart EA 2015 Uterine fibroids. N Engl J Med 372 16461655. (https://doi.org/10.1056/nejmcp1411029)

  • Swan SH, Main KM, Liu F, et al. 2005 Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113 10561061. (https://doi.org/10.1289/ehp.8100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor E & Gomel V 2008 The uterus and fertility. Fertil Steril 89 116. (https://doi.org/10.1016/j.fertnstert.2007.09.069)

  • Taylor KW, Joubert BR, Braun JM, et al. 2016 Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: lessons from an innovative workshop. Environ Health Perspect 124 A227a229. (https://doi.org/10.1289/ehp547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomsen AM, Riis AH, Olsen J, et al. 2017 Female exposure to phthalates and time to pregnancy: a first pregnancy planner study. Hum Reprod 32 232238

  • Toft G, Jönsson BA, Lindh CH, et al. 2012 Association between pregnancy loss and urinary phthalate levels around the time of conception. Environ Health Perspect 120 458463. (https://doi.org/10.1289/ehp.1103552)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trasande L, Nelson ME, Alshawabkeh A, et al. 2024 Prenatal phthalate exposure and adverse birth outcomes in the USA: a prospective analysis of births and estimates of attributable burden and costs. Lancet Planet Health 8 e74e85. (https://doi.org/10.1016/s2542-5196(23)00270-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Upson K, Sathyanarayana S, De Roos AJ, et al. 2013 Phthalates and risk of endometriosis. Environ Res 126 9197. (https://doi.org/10.1016/j.envres.2013.07.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valeri L, Mazumdar MM, Bobb JF, et al. 2017 The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 months of age: evidence from rural Bangladesh. Environ Health Perspect 125 067015. (https://doi.org/10.1289/ehp614)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X, Wang LL, Tian YK, et al. 2022 Association between exposures to phthalate metabolites and preterm birth and spontaneous preterm birth: a systematic review and meta-analysis. Reprod Toxicol 113 19. (https://doi.org/10.1016/j.reprotox.2022.07.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Du YY, Yao W, et al. 2023 Associations between phthalate metabolites and cytokines in the follicular fluid of women undergoing in vitro fertilization. Ecotoxicol Environ Saf 267 115616. (https://doi.org/10.1016/j.ecoenv.2023.115616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watkins DJ, Milewski S, Domino SE, et al. 2016 Maternal phthalate exposure during early pregnancy and at delivery in relation to gestational age and size at birth: a preliminary analysis. Reprod Toxicol 65 5966. (https://doi.org/10.1016/j.reprotox.2016.06.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weuve J, Hauser R, Calafat AM, et al. 2010 Association of exposure to phthalates with endometriosis and uterine leiomyomata: findings from NHANES, 1999–2004. Environ Health Perspect 118 825832. (https://doi.org/10.1289/ehp.0901543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilson EE, Little BB, Byrd W, et al. 1993 The effect of gonadotropin-releasing hormone agonists on adrenocorticotropin and cortisol secretion in adult premenopausal women. J Clin Endocrinol Metab 76 162164. (https://doi.org/10.1210/jcem.76.1.8380603)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wise LA & Laughlin-Tommaso SK 2016 Epidemiology of uterine fibroids: from menarche to menopause. Clin Obstet Gynecol 59 224. (https://doi.org/10.1097/grf.0000000000000164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao YC, Du YY, Wang YX, et al. 2020 Predictors of phthalate metabolites in urine and follicular fluid and correlations between urine and follicular fluid phthalate metabolite concentrations among women undergoing in vitro fertilization. Environ Res 184 109295. (https://doi.org/10.1016/j.envres.2020.109295)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao W, Liu C, Qin DY, et al. 2023a Associations between phthalate metabolite concentrations in follicular fluid and reproductive outcomes among women undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. Environ Health Perspect 131 127019. (https://doi.org/10.1289/ehp11998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao Y, Du Y, Guo N, et al. 2023b Associations between urinary phthalate concentrations and antral follicle count among women undergoing in vitro fertilization. Front Endocrinol 14 1286391. (https://doi.org/10.3389/fendo.2023.1286391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Cao Y, Shi H, et al. 2015 Could exposure to phthalates speed up or delay pubertal onset and development? A 1.5-year follow-up of a school-based population. Environ Int 83 4149. (https://doi.org/10.1016/j.envint.2015.06.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang M, Liu C, Yuan XQ, et al. 2023a Individual and joint associations of urinary phthalate metabolites with polycystic ovary and polycystic ovary syndrome: results from the TREE cohort. Environ Toxicol Pharmacol 102 104233. (https://doi.org/10.1016/j.etap.2023.104233)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang M, Liu C, Yuan XQ, et al. 2023b Oxidatively generated DNA damage mediates the associations of exposure to phthalates with uterine fibroids and endometriosis: findings from TREE cohort. Free Radic Biol Med 205 6976. (https://doi.org/10.1016/j.freeradbiomed.2023.05.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou C, Gao L & Flaws JA 2017a Exposure to an environmentally relevant phthalate mixture causes transgenerational effects on female reproduction in mice. Endocrinology 158 17391754. (https://doi.org/10.1210/en.2017-00100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou C, Gao L & Flaws JA 2017b Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice. Toxicol Appl Pharmacol 318 4957. (https://doi.org/10.1016/j.taap.2017.01.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu G, Wen Y, Cao K, et al. 2024 A review of common statistical methods for dealing with multiple pollutant mixtures and multiple exposures. Front Public Health 12 1377685. (https://doi.org/10.3389/fpubh.2024.1377685)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zota AR, Geller RJ, Calafat AM, et al. 2019 Phthalates exposure and uterine fibroid burden among women undergoing surgical treatment for fibroids: a preliminary study. Fertil Steril 111 112121. (https://doi.org/10.1016/j.fertnstert.2018.09.009)

    • PubMed
    • Search Google Scholar
    • Export Citation