Non-canonical spatial organization of heterochromatin in mouse preimplantation embryos

in Reproduction
Authors:
Amélie Bonnet-Garnier Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France

Search for other papers by Amélie Bonnet-Garnier in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2095-3365
and
Katia Ancelin Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France

Search for other papers by Katia Ancelin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2117-9754

Correspondence should be addressed to A Bonnet-Garnier: amelie.bonnet-garnier@inrae.fr or to K Ancelin: katia.ancelin@inserm.fr
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Spatial genome organization refers to the arrangement of chromosomes within the nucleus, undergoing significant chromatin remodeling during the early stages of mammalian development. This review explores the mechanisms behind this organization, focusing on heterochromatin and its potential role in regulating embryonic genome expression.

Abstract

Spatial genome organization refers to the conformation of the chromosomes and their relative positioning within the nucleus. In mammals, fertilization entails intense chromatin remodeling of parental genomes, as well as large-scale structural changes in nuclear organization of the newly formed zygote over the first two cell cleavages. The molecular characteristics, mechanisms and functionality of spatial genome organization during the early steps of development in mice have been extensively studied and will be presented in this review, with a specific focus on heterochromatin. Concomitant with the maturation of genomic architecture, embryonic genome activation occurs in transient waves of transcription. Here, we will also discuss the putative link between heterochromatin organization and regulation of genome expression.

 

  • Collapse
  • Expand
  • Abe K-I, Yamamoto R, Franke V, et al. 2015 The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3’ processing. EMBO J 34 15231537. (https://doi.org/10.15252/embj.201490648)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Acloque H, Bonnet-Garnier A, Mompart F, et al. 2013 Sperm nuclear architecture is locally modified in presence of a Robertsonian translocation t(13;17). PLoS One 8 e78005. (https://doi.org/10.1371/journal.pone.0078005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adenot PG, Mercier Y, Renard JP, et al. 1997 Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124 46154625. (https://doi.org/10.1242/dev.124.22.4615)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aguirre-Lavin T, Adenot P, Bonnet-Garnier A, et al. 2012 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev Biol 12 30. (https://doi.org/10.1186/1471-213x-12-30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ancelin K, Syx L, Borensztein M, et al. 2016 Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. Elife 5 e08851. (https://doi.org/10.7554/eLife.08851)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andreu-Vieyra CV, Chen R, Agno JE, et al. 2010 MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8 e1000453. (https://doi.org/10.1371/journal.pbio.1000453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andreu MJ, Alvarez-Franco A, Portela M, et al. 2022 Establishment of 3D chromatin structure after fertilization and the metabolic switch at the morula-to-blastocyst transition require CTCF. Cell Rep 41 111501. (https://doi.org/10.1016/j.celrep.2022.111501)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benc M, Strejcek F, Morovic M, et al. 2021 Improving the quality of oocytes with the help of nucleolotransfer therapy. Pharmaceuticals 14 328413. (https://doi.org/10.3390/ph14040328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bogolyubova I & Bogolyubov D 2020 Heterochromatin morphodynamics in late oogenesis and early embryogenesis of mammals. Cells 9 1497. (https://doi.org/10.3390/cells9061497)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bompadre O & Andrey G 2019 Chromatin topology in development and disease. Curr Opin Genet Dev 55 3238. (https://doi.org/10.1016/j.gde.2019.04.007)

  • Bonnet-Garnier A, Feuerstein P, Chebrout M, et al. 2012 Genome organization and epigenetic marks in mouse germinal vesicle oocytes. Int J Dev Biol 56 877887. (https://doi.org/10.1387/ijdb.120149ab)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonnet-Garnier A, Kiêu K, Aguirre-Lavin T, et al. 2018 Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma 127 387403. (https://doi.org/10.1007/s00412-018-0671-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borensztein M, Syx L, Ancelin K, et al. 2017 Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat Struct Mol Biol 24 226233. (https://doi.org/10.1038/nsmb.3365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borsos M & Torres-Padilla M-E 2016 Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev 30 611621. (https://doi.org/10.1101/gad.273805.115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borsos M, Perricone SM, Schauer T, et al. 2019 Genome–lamina interactions are established de novo in the early mouse embryo. Nature 569 729733. (https://doi.org/10.1038/s41586-019-1233-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouwman BAM, Crosetto N & Bienko M 2022 The era of 3D and spatial genomics. Trends Genet 38 10621075. (https://doi.org/10.1016/j.tig.2022.05.010)

  • Bu G, Zhu W, Liu X, et al. 2022 Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos. Genome Res 32 14871501. (https://doi.org/10.1101/gr.276207.121)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burton A, Brochard V, Galan C, et al. 2020 Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 22 767778. (https://doi.org/10.1038/s41556-020-0536-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Camacho OV, Galan C, Swist-Rosowska K, et al. 2017 Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6 129. (https://doi.org/10.7554/elife.25293)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casanova M, Pasternak M, El Marjou F, et al. 2013 Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep 4 11561167. (https://doi.org/10.1016/j.celrep.2013.08.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chambeyron S & Bickmore WA 2004 Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18 11191130. (https://doi.org/10.1101/gad.292104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chaumeil J, Le Baccon P, Wutz A, et al. 2006 A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20 22232237. (https://doi.org/10.1101/gad.380906)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chebrout M, Koné MC, Jan HU, et al. 2022 Transcription of rRNA in early mouse embryos promotes chromatin reorganization and expression of major satellite repeats. J Cell Sci 135 jcs258798. (https://doi.org/10.1242/jcs.258798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen X, Ke Y, Wu K, et al. 2019 Key role for CTCF in establishing chromatin structure in human embryos. Nature 576 306310. (https://doi.org/10.1038/s41586-019-1812-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Z, Djekidel MN & Zhang Y 2021 Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat Genet 53 551563. (https://doi.org/10.1038/s41588-021-00821-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collombet S, Ranisavljevic N, Nagano T, et al. 2020 Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580 142146. (https://doi.org/10.1038/s41586-020-2125-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cremer T & Cremer M 2010 Chromosome territories. Cold Spring Harbor Perspect Biol 2 122. (https://doi.org/10.1101/cshperspect.a003889)

  • Crosetto N & Bienko M 2020 Radial organization in the mammalian nucleus. Front Genet 11 110. (https://doi.org/10.3389/fgene.2020.00033)

  • Davidson IF & Peters J-M 2021 Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 22 445464. (https://doi.org/10.1038/s41580-021-00349-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dequeker BJH, Scherr MJ, Brandão HB, et al. 2022 MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 606 197203. (https://doi.org/10.1038/s41586-022-04730-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dixon JR, Selvaraj S, Yue F, et al. 2012 Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485 376380. (https://doi.org/10.1038/nature11082)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du Z, Zheng H, Huang B, et al. 2017 Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547 232235. (https://doi.org/10.1038/nature23263)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du Z, Zheng H, Kawamura YK, et al. 2020 Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol Cell 77 825839.e7. (https://doi.org/10.1016/j.molcel.2019.11.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du Z, Zhang K & Xie W 2022 Epigenetic reprogramming in early animal development. Cold Spring Harbor Perspect Biol 14 a039677. (https://doi.org/10.1101/cshperspect.a039677)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fadloun A, Le Gras S, Jost B, et al. 2013 Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20 332338. (https://doi.org/10.1038/nsmb.2495)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flyamer IM, Gassler J, Imakaev M, et al. 2017 Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544 110114. (https://doi.org/10.1038/nature21711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fulka H & Aoki F 2016 Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries. Biol Reprod 94 143. (https://doi.org/10.1095/biolreprod.115.136093)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gassler J, Brandão HB, Imakaev M, et al. 2017 A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36 36003618. (https://doi.org/10.15252/embj.201798083)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gold HB, Jung YH & Corces VG 2018 Not just heads and tails: the complexity of the sperm epigenome. J Biol Chem 293 1381513820. (https://doi.org/10.1074/jbc.r117.001561)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goto N, Suke K, Yonezawa N, et al. 2024 ISWI chromatin remodeling complexes recruit NSD2 and H3K36me2 in pericentromeric heterochromatin. J Cell Biol 223 e202310084. (https://doi.org/10.1083/jcb.202310084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo Y, Zhao S & Wang GG 2021 Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘readout’, and phase separation-based compaction. Trends Genet 37 547565. (https://doi.org/10.1016/j.tig.2020.12.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupta S & Santoro R 2020 Regulation and roles of the nucleolus in embryonic stem cells: from ribosome biogenesis to genome organization. Stem Cell Rep 15 12061219. (https://doi.org/10.1016/j.stemcr.2020.08.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guthmann M, Burton A & Torres‐Padilla M-E 2019 Expression and phase separation potential of heterochromatin proteins during early mouse development. EMBO Rep 20 e47952. (https://doi.org/10.15252/embr.201947952)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haaf T & Ward DC 1995 Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219 604611. (https://doi.org/10.1006/excr.1995.1270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Heijden GW, Derijck AAHA, Ramos L, et al. 2006 Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298 458469. (https://doi.org/10.1016/j.ydbio.2006.06.051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hildebrand EM & Dekker J 2020 Mechanisms and functions of chromosome compartmentalization. Trends Biochem Sci 45 385396. (https://doi.org/10.1016/j.tibs.2020.01.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houlard M, Berlivet S, Probst AV, et al. 2006 CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. Plos Genet 2 e181. (https://doi.org/10.1371/journal.pgen.1005970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hübner JM, Müller T, Papageorgiou DN, et al. 2019 EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol 21 878889. (https://doi.org/10.1093/neuonc/noz058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue A, Jiang L, Lu F, et al. 2017a Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547 419424. (https://doi.org/10.1038/nature23262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoue A, Jiang L, Lu F, et al. 2017b Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 31 19271932. (https://doi.org/10.1101/gad.304113.117)

  • Inoue A, Chen Z, Yin Q, et al. 2018 Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev 32 15251536. (https://doi.org/10.1101/gad.318675.118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ioannou D, Millan NM, Jordan E, et al. 2017 A new model of sperm nuclear architecture following assessment of the organization of centromeres and telomeres in three-dimensions. Scientific Rep 7 4158541614. (https://doi.org/10.1038/srep41585)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jachowicz JW, Santenard A, Bender A, et al. 2013 Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev 27 24272432. (https://doi.org/10.1101/gad.224550.113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jain SU, Do TJ, Lund PJ, et al. 2019 PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3K27M-like mechanism. Nat Commun 10 2146. (https://doi.org/10.1038/s41467-019-09981-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jain SU, Rashoff AQ, Krabbenhoft SD, et al. 2020 H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol Cell 80 726735.e7. (https://doi.org/10.1016/j.molcel.2020.09.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Janssen A, Colmenares SU & Karpen GH 2018 Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol 34 265288. (https://doi.org/10.1146/annurev-cellbio-100617-062653)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ke Y, Xu Y, Chen X, et al. 2017 3D Chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170 367381.e20. (https://doi.org/10.1016/j.cell.2017.06.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J, Zhao H, Dan J, et al. 2016 Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse. Plos Genet 12 e1005970. (https://doi.org/10.1371/journal.pgen.1005970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ko MSH 2016 Zygotic genome activation revisited: looking through the expression and function of Zscan4. Curr Top Dev Biol 120 103124

  • Koehler D, Zakhartchenko V, Froenicke L, et al. 2009 Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 315 20532063. (https://doi.org/10.1016/j.yexcr.2009.02.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laing AF, Lowell S & Brickman JM 2015 Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression. Dev Biol 397 5666. (https://doi.org/10.1016/j.ydbio.2014.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li F, Wang D, Song R, et al. 2020 The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos. Genome Biol 21 203221. (https://doi.org/10.1186/s13059-020-02095-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lieberman-Aiden E, Van Berkum NL, Williams L, et al. 2009 Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 289293. (https://doi.org/10.1126/science.1181369)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin CJ, Koh FM, Wong P, et al. 2014 Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30 268279. (https://doi.org/10.1016/j.devcel.2014.06.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Tardat M, Gill ME, et al. 2020 SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 39 124. (https://doi.org/10.15252/embj.2019103697)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loda A, Collombet S & Heard E 2022 Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 23 231249. (https://doi.org/10.1038/s41580-021-00438-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu X, Zhang Y, Wang L, et al. 2021 Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting. Sci Adv 7 eabi6178. (https://doi.org/10.1126/sciadv.abi6178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luciano AM, Franciosi F, Dieci C, et al. 2014 Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci 149 310. (https://doi.org/10.1016/j.anireprosci.2014.06.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maalouf WE, Liu Z, Brochard V, et al. 2009 Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev Biol 9 1110. (https://doi.org/10.1186/1471-213x-9-11)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madeja ZE, Pawlak P & Piliszek A 2019 Beyond the mouse: non-rodent animal models for study of early mammalian development and biomedical research. Int J Dev Biol 63 187201. (https://doi.org/10.1387/ijdb.180414ap)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin C, Beaujean N, Brochard V, et al. 2006a Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 292 317332. (https://doi.org/10.1016/j.ydbio.2006.01.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin C, Brochard V, Migné C, et al. 2006b Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol Reprod Dev 73 11021111. (https://doi.org/10.1002/mrd.20506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matoba S, Kozuka C, Miura K, et al. 2022 Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes Dev 36 483494. (https://doi.org/10.1101/gad.349390.122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mayer W, Smith A, Fundele R, et al. 2000 Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol 148 629634. (https://doi.org/10.1083/jcb.148.4.629)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mayer R, Brero A, von Hase J, et al. 2005 Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6 4422. (https://doi.org/10.1186/1471-2121-6-44)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mei H, Kozuka C, Hayashi R, et al. 2021 H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat Genet 53 539550. (https://doi.org/10.1038/s41588-021-00820-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Merico V, Barbieri J, Zuccotti M, et al. 2007 Epigenomic differentiation in mouse preimplantation nuclei of biparental, parthenote and cloned embryos. Chromosome Res 15 341360. (https://doi.org/10.1007/s10577-007-1130-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meyer-Ficca M, Müller-Navia J & Scherthan H 1998 Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 111 13631370. (https://doi.org/10.1242/jcs.111.10.1363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyanari Y & Torres-Padilla M-E 2012 Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483 470473. (https://doi.org/10.1038/nature10807)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Namekawa SH, Payer B, Huynh KD, et al. 2010 Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30 31873205. (https://doi.org/10.1128/mcb.00227-10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nora EP, Lajoie BR, Schulz EG, et al. 2012 Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485 381385. (https://doi.org/10.1038/nature11049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ooga M, Suzuki MG & Aoki F 2013 Involvement of DOT1L in the remodeling of heterochromatin configuration during early preimplantation development in mice. Biol Reprod 89 110. (https://doi.org/10.1095/biolreprod.113.113258)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padeken J & Heun P 2014 Nucleolus and nuclear periphery: velcro for heterochromatin. Curr Opin Cell Biol 28 5460. (https://doi.org/10.1016/j.ceb.2014.03.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pailles M, Hirlemann M, Brochard V, et al. 2022 H3K27me3 at pericentromeric heterochromatin is a defining feature of the early mouse blastocyst. Sci Rep 12 1390813915. (https://doi.org/10.1038/s41598-022-17730-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pajtler KW, Wen J, Sill M, et al. 2018 Molecular heterogeneity and CXorf67 alterations in posterior fossa group A PFA ependymomas. Acta Neuropathol 136 211226. (https://doi.org/10.1007/s00401-018-1877-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Payne AC, Chiang ZD, Reginato PL, et al. 2021 In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371 eaay3446. (https://doi.org/10.1126/science.aay3446)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peaston AE, Evsikov AV, Graber JH, et al. 2004 Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7 597606. (https://doi.org/10.1016/j.devcel.2004.09.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pichugin A, Le Bourhis D, Adenot P, et al. 2010 Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 139 129137. (https://doi.org/10.1530/rep-08-0435)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piunti A, Smith ER, Morgan MAJ, et al. 2019 Catacomb: an endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci Adv 5 eaax2887. (https://doi.org/10.1126/sciadv.aax2887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poleshko A, Smith CL, Nguyen SC, et al. 2019 H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 8 124. (https://doi.org/10.7554/elife.49278)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Politz JCR, Scalzo D & Groudine M 2016 The redundancy of the mammalian heterochromatic compartment. Curr Opin Genet Dev 37 18. (https://doi.org/10.1016/j.gde.2015.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Probst AV, Santos F, Reik W, et al. 2007 Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116 403415. (https://doi.org/10.1007/s00412-007-0106-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Posfai E, Kunzmann R, Brochard V, et al. 2012 Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev 26 920932. (https://doi.org/10.1101/gad.188094.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Probst AV, Okamoto I, Casanova M, et al. 2010 A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19 625638. (https://doi.org/10.1016/j.devcel.2010.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puschendorf M, Terranova R, Boutsma E, et al. 2008 PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40 411420. (https://doi.org/10.1038/ng.99)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ragazzini R, Pérez-Palacios R, Baymaz IH, et al. 2019 EZHIP constrains Polycomb repressive complex 2 activity in germ cells. Nat Commun 10 3858. (https://doi.org/10.1038/s41467-019-11800-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santos F, Peters AH, Otte AP, et al. 2005 Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280 225236. (https://doi.org/10.1016/j.ydbio.2005.01.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmitges FW, Prusty AB, Faty M, et al. 2011 Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42 330341. (https://doi.org/10.1016/j.molcel.2011.03.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwarzer W, Abdennur N, Goloborodko A, et al. 2017 Two independent modes of chromatin organization revealed by cohesin removal. Nature 551 5156. (https://doi.org/10.1038/nature24281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Steensel B & Belmont AS 2017 Lamina-associated domains: links with chromosome architecture, heterochromatin and gene repression. Cell 169 780791. (https://doi.org/10.1016/j.cell.2017.04.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan JH, Wang HL, Sun XS, et al. 2009 Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol Hum Reprod 15 19. (https://doi.org/10.1093/molehr/gan069)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tardat M, Albert M, Kunzmann R, et al. 2015 Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol Cell 58 157171. (https://doi.org/10.1016/j.molcel.2015.02.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xia W, Xu J, Yu G, et al. 2019 Resetting histone modifications during human parental-to-zygotic transition. Science 365 353360. (https://doi.org/10.1126/science.aaw5118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu Q, Xiang Y, Wang Q, et al. 2019 SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat Genet 51 844856. (https://doi.org/10.1038/s41588-019-0398-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang W, Chen Z, Yin Q, et al. 2019 Maternal-biased H3K27me3 correlates with paternal-specific gene expression in the human morula. Genes Dev 33 382387. (https://doi.org/10.1101/gad.323105.118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang S, Tao W & Han JDJ 2022 3D chromatin structure changes during spermatogenesis and oogenesis. Comput Struct Biotechnol J 20 24342441. (https://doi.org/10.1016/j.csbj.2022.05.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Zhang C, Zhou D, et al. 2023 Telomeres cooperate in zygotic genome activation by affecting DUX4/Dux transcription. iScience 26 106158. (https://doi.org/10.1016/j.isci.2023.106158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng H, Huang B, Zhang B, et al. 2016 Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 63 10661079. (https://doi.org/10.1016/j.molcel.2016.08.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou C, Halstead MM, Bonnet‐Garnier A, et al. 2023 Histone remodeling reflects conserved mechanisms of bovine and human preimplantation development. EMBO Rep 24 120. (https://doi.org/10.15252/embr.202255726)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zuccotti M, Ponce RH, Boiani M, et al. 2002 The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10 7378. (https://doi.org/10.1017/s0967199402002101)

    • PubMed
    • Search Google Scholar
    • Export Citation