Drosophila AK-3, a homolog of human CKMT1B, is essential for spermiogenesis

in Reproduction
Authors:
Meng-Yan Chen School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
School of Life Sciences, Henan University, Kaifeng, PR China

Search for other papers by Meng-Yan Chen in
Current site
Google Scholar
PubMed
Close
,
Qian Zhao School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Qian Zhao in
Current site
Google Scholar
PubMed
Close
,
Ying-Ying Wang School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Ying-Ying Wang in
Current site
Google Scholar
PubMed
Close
,
Yue Ren School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Yue Ren in
Current site
Google Scholar
PubMed
Close
,
Zhi-Xian Cao School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Zhi-Xian Cao in
Current site
Google Scholar
PubMed
Close
,
Bin Mao School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Bin Mao in
Current site
Google Scholar
PubMed
Close
,
Hao-Lin Wang School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Hao-Lin Wang in
Current site
Google Scholar
PubMed
Close
, and
Yu-Feng Wang School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China

Search for other papers by Yu-Feng Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1823-373X

Correspondence should be addressed to Y-F Wang: yfengw@ccnu.edu.cn
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

The assembly and maintenance of axonemal microtubules during spermatogenesis is essential for production of functional sperm. This study shows that arginine kinase 3 (AK-3) (human ortholog CKMT1B) is necessary for Drosophila spermiogenesis and its biological function is conserved from flies to humans.

Abstract

Spermatogenesis is a conserved process across animals, involving the proliferation and maintenance of germ stem cells, haploid spermatid production via meiosis and the generation of mature sperm with unique shapes. Our previous studies revealed that after ocnus (ocn) knockdown in germlines, the male flies Drosophila melanogaster were sterile, and the expression levels of many proteins were significantly changed. Among these proteins, CG4546 (arginine kinase 3, AK-3) was drastically downregulated, implying its crucial role in fly spermatogenesis. Here, we demonstrate that AK-3 was highly expressed in Drosophila testes. Knockdown of the AK-3 in testes leads to scattered nuclear bundles, loss of the central paired microtubule in the flagellar axoneme, disrupted individualization complexes, lack of mature sperm in seminal vesicles and thus resulting in male complete infertility. Notably, Drosophila AK-3 shares homology with human CKMT1B. Expression of human CKMT1B can rescue the defects in late spermatogenesis and male sterility caused by AK-3 knockdown in flies, indicating that this gene is evolutionarily and functionally conserved. These results suggest that AK-3 contributes to the regulation of spermiogenesis, especially the assembly and stabilizing of the axonemal microtubules during the sperm elongation. These data substantiate the importance of arginine kinase during spermatogenesis and its evolutionary conservation, and might provide fundamental information for studying the function of CKMT1B in male fertility in humans.

Supplementary Materials

 

  • Collapse
  • Expand
  • Baker CC , Gallicchio L , Matias NR , et al. 2023 Cell-type-specific interacting proteins collaborate to regulate the timing of Cyclin B protein expression in male meiotic prophase. Development 150 dev201709. (https://doi.org/10.1242/dev.201709)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Biwot JC , Zhang HB , Liu C , et al. 2020 Wolbachia-induced expression of kenny gene in testes affects male fertility in Drosophila melanogaster. Insect Sci 27 869882. (https://doi.org/10.1111/1744-7917.12730)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen MY , Duan X , Wang Q , et al. 2023 Cytochrome c1-like is required for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. J Exp Biol 226 jeb245277. (https://doi.org/10.1242/jeb.245277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diegmiller R , Imran Alsous J , Li D , et al. 2023 Fusome topology and inheritance during insect gametogenesis. PLoS Comput Biol 19 e1010875. (https://doi.org/10.1371/journal.pcbi.1010875)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diener DR , Ang LH & Rosenbaum JL 1993 Assembly of flagellar radial spoke proteins in Chlamydomonas: identification of the axoneme binding domain of radial spoke protein 3. J Cell Biol 123 183190. (https://doi.org/10.1083/jcb.123.1.183)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ek P , Ek B & Zetterqvist Ö 2015 Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci 120 2027. (https://doi.org/10.3109/03009734.2014.996720)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eslamieh M , Mirsalehi A , Markova DN , et al. 2022 COX4-like, a nuclear-encoded mitochondrial gene duplicate, is essential for male fertility in Drosophila melanogaster. Genes 13 424. (https://doi.org/10.3390/genes13030424)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fabian L & Brill JA 2012 Drosophila spermiogenesis: big things come from little packages. Spermatogenesis 2 197212. (https://doi.org/10.4161/spmg.21798)

  • Fang Y , Zhang F , Zhao F , et al. 2024 RpL38 modulates germ cell differentiation by controlling Bam expression in Drosophila testis. Sci China Life Sci 67 24112425 [Epub ahead of print]. (https://doi.org/10.1007/s11427-024-2646-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franz A , Roque H , Saurya S , et al. 2013 CP110 exhibits novel regulatory activities during centriole assembly in Drosophila. J Cell Biol 203 785799. (https://doi.org/10.1083/jcb.201305109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frommer A , Hjeij R , Loges NT , et al. 2015 Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am J Respir Cell Mol Biol 53 563573. (https://doi.org/10.1165/rcmb.2014-0483oc)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garlovsky MD , Sandler JA & Karr TL 2022 Functional diversity and evolution of the Drosophila sperm proteome. Mol Cell Proteomics 21 100281. (https://doi.org/10.1016/j.mcpro.2022.100281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giansanti MG , Bucciarelli E , Bonaccorsi S , et al. 2008 Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr Biol 18 303309. (https://doi.org/10.1016/j.cub.2008.01.058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hime GR , Brill JA & Fuller MT 1996 Assembly of ring canals in the male germ line from structural components of the contractile ring. J Cell Sci 109 27792788. (https://doi.org/10.1242/jcs.109.12.2779)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horard B , Terretaz K , Gosselin-Grenet AS , et al. 2022 Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Curr Biol 32 13191331.e5. (https://doi.org/10.1016/j.cub.2022.01.052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu X , Yan R , Song L , et al. 2014 Subcellular localization and function of mouse radial spoke protein 3 in mammalian cells and central nervous system. J Mol Histol 45 723732. (https://doi.org/10.1007/s10735-014-9590-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang Q , Chen X , Yu H , et al. 2023 Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol 13 230136. (https://doi.org/10.1098/rsob.230136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inaba K 2007 Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann N Y Acad Sci 1101 506526. (https://doi.org/10.1196/annals.1389.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeanson L , Copin B , Papon JF , et al. 2015 RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am J Hum Genet 97 153162. (https://doi.org/10.1016/j.ajhg.2015.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jha KN , Tripurani SK & Johnson GR 2017 TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci 130 18351844. (https://doi.org/10.1242/jcs.202721)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaufman RS , Price KL , Mannix KM , et al. 2020 Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome. Development 147 dev190140. (https://doi.org/10.1242/dev.190140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy T , Chen X , Govin J , et al. 2006 Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev 20 25802592. (https://doi.org/10.1101/gad.1457006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li C , Ren Y , Chen MY , et al. 2024 CG9920 is necessary for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. Dev Biol 512 1325. (https://doi.org/10.1016/j.ydbio.2024.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lowe DD & Montell DJ 2022 Unconventional translation initiation factor EIF2A is required for Drosophila spermatogenesis. Dev Dyn 251 377389. (https://doi.org/10.1002/dvdy.403)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maaroufi HO , Pauchova L , Lin YH , et al. 2022 Mutation in Drosophila concentrative nucleoside transporter 1 alters spermatid maturation and mating behavior. Front Cell Dev Biol 10 945572. (https://doi.org/10.3389/fcell.2022.945572)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MacIntyre R & Collier G 2017 RNAi effects on the alpha glycerophosphate dehydrogenase, the alpha glycerophosphate oxidase and the arginine kinase paralogs of Drosophila melanogaster. Dros Inf Serv 100 140144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakajima YI & Kuranaga E 2017 Caspase-dependent non-apoptotic processes in development. Cell Death Differ 24 14221430. (https://doi.org/10.1038/cdd.2017.36)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nayyab S , Gervasi MG , Tourzani DA , et al. 2021 TSSK3, a novel target for male contraception, is required for spermiogenesis. Mol Reprod Dev 88 718730. (https://doi.org/10.1002/mrd.23539)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nozawa K , Garcia TX , Kent K , et al. 2023 Testis-specific serine kinase 3 is required for sperm morphogenesis and male fertility. Andrology 11 826839. (https://doi.org/10.1111/andr.13314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Onoufriadis A , Shoemark A , Schmidts M , et al. 2014 Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 23 33623374. (https://doi.org/10.1093/hmg/ddu046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pigino G & Ishikawa T 2012 Axonemal radial spokes: 3D structure, function and assembly. Bioarchitecture 2 5058. (https://doi.org/10.4161/bioa.20394)

  • Prakash Yadav R , Leskinen S , Ma L , et al. 2022 Chromatin remodelers HELLS, WDHD1 and BAZ1A are dynamically expressed during mouse spermatogenesis. Reproduction 165 4963. (https://doi.org/10.1530/REP-22-0240)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salicioni AM , Gervasi MG , Sosnik J , et al. 2020 Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraception. Biol Reprod 103 264274. (https://doi.org/10.1093/biolre/ioaa064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shang P , Baarends WM , Hoogerbrugge J , et al. 2010 Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. J Cell Sci 123 331339. (https://doi.org/10.1242/jcs.059949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siddall NA & Hime GR 2017 A Drosophila toolkit for defining gene function in spermatogenesis. Reproduction 153 R121R132. (https://doi.org/10.1530/rep-16-0347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soulavie F , Piepenbrock D , Thomas J , et al. 2014 Hemingway is required for sperm flagella assembly and ciliary motility in Drosophila. Mol Biol Cell 25 12761286. (https://doi.org/10.1091/mbc.E13-10-0616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spiridonov NA , Wong L , Zerfas PM , et al. 2005 Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol Cell Biol 25 42504261. (https://doi.org/10.1128/mcb.25.10.4250-4261.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steinhauer J , Statman B , Fagan JK , et al. 2019 Combover interacts with the axonemal component Rsp3 and is required for Drosophila sperm individualization. Development 146 dev179275. (https://doi.org/10.1242/dev.179275)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tokuyasu KT 1975 Dynamics of spermiogenesis in Drosophila melanogaster. VI. Significance of “onion” nebenkern formation. J Ultrastruct Res 53 93112. (https://doi.org/10.1016/s0022-5320(75)80089-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tokuyasu KT , Peacock WJ & Hardy RW 1972 Dynamics of spermiogenesis in Drosophila melanogaster. II. Coiling process. Z Zellforsch Mikrosk Anat 127 492525. (https://doi.org/10.1007/bf00306868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vieillard J , Paschaki M , Duteyrat JL , et al. 2016 Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J Cell Biol 214 875889. (https://doi.org/10.1083/jcb.201603086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X , Wei Y , Fu G , et al. 2015 Tssk4 is essential for maintaining the structural integrity of sperm flagellum. Mol Hum Reprod 21 136145. (https://doi.org/10.1093/molehr/gau097)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X , Li H , Fu G , et al. 2016 Testis-specific serine/threonine protein kinase 4 (Tssk4) phosphorylates Odf2 at Ser-76. Sci Rep 6 22861. (https://doi.org/10.1038/srep22861)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y , Xu R , Cheng Y , et al. 2019 RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila. J Genet Genomics 46 281290. (https://doi.org/10.1016/j.jgg.2019.05.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White-Cooper H 2009 Studying how flies make sperm--investigating gene function in Drosophila testes. Mol Cell Endocrinol 306 6674. (https://doi.org/10.1016/j.mce.2008.11.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White-Cooper H 2010 Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 139 1121. (https://doi.org/10.1530/REP-09-0083)

  • Wirschell M , Zhao F , Yang C , et al. 2008 Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. Cell Motil Cytoskeleton 65 238248. (https://doi.org/10.1002/cm.20257)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Witt E , Benjamin S , Svetec N , et al. 2019 Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational bias in Drosophila. Elife 16 e47138. (https://doi.org/10.7554/eLife.47138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu CH , Zong Q , Du AL , et al. 2016 Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Dev Biol 420 7989. (https://doi.org/10.1016/j.ydbio.2016.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamada R , Floate KD , Riegler M , et al. 2007 Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics 177 801808. (https://doi.org/10.1534/genetics.106.068486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang X , Liu X , Li Y , et al. 2017 The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 81 341348. (https://doi.org/10.1016/j.msec.2017.07.042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu J , Lan X , Chen X , et al. 2016 Protein synthesis and degradation are essential to regulate germline stem cell homeostasis in Drosophila testes. Development 143 29302945. (https://doi.org/10.1242/dev.134247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan X , Zheng H , Su Y , et al. 2019 Drosophila Pif1A is essential for spermatogenesis and is the homolog of human CCDC157, a gene associated with idiopathic NOA. Cell Death Dis 10 125. (https://doi.org/10.1038/s41419-019-1398-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X , Peng J , Wu M , et al. 2023 Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility. Nat Commun 14 2629. (https://doi.org/10.1038/s41467-023-38357-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Y , Bi J , Hou MY , et al. 2018 Ocnus is essential for male germ cell development in Drosophila melanogaster. Insect Mol Biol 27 545555. (https://doi.org/10.1111/imb.12393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Q , Chen X , Qiao C , et al. 2021 Somatic CG6015 mediates cyst stem cell maintenance and germline stem cell differentiation via EGFR signaling in Drosophila testes. Cell Death Discov 7 68. (https://doi.org/10.1038/s41420-021-00452-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Y , Mao B , Wang Q , et al. 2023 Quantitative proteomics and phosphoproteomics reveal insights into mechanisms of Ocnus function in Drosophila testis development. BMC Genom 24 283. (https://doi.org/10.1186/s12864-023-09386-2)

    • PubMed
    • Search Google Scholar
    • Export Citation