(A Ning and N Xiao contributed equally to this study)
Early pregnancy loss (EPL) is a common pregnancy problem lacking preventive measures. This study shows that DMOG-preconditioned hUC-MSCs can reduce early embryo loss.
EPL, a common pregnancy complication, yet has few effective preventive measures currently. To investigate whether dimethyloxaloylglycine (DMOG)-preconditioned human umbilical cord mesenchymal stem cells (hUC-MSCs) can prevent EPL, we initially evaluated the effect of DMOG on hUC-MSCs in vitro. Subsequently, the DMOG-preconditioned hUC-MSCs were transplanted into the lipopolysaccharide (LPS)-induced murine abortion model for intervention, following which we conducted phenotypic analysis. It was found that DMOG treatment enhanced the mRNA expression of HIF1A, H19 and GLUT1 in hUC-MSCs and augmented their migration capability (P < 0.01). Co-culture experiments showed that DMOG-treated hUC-MSCs notably reduced the mRNA levels of IL6, IL1B and TNFA in LPS-induced HTR-8/SVneo cells (P < 0.01). Moreover, DMOG-preconditioned hUC-MSCs remarkably decreased the fetal resorption rate and increased the embryo weight in LPS-induced abortive mice (P < 0.01). Histological analysis indicated that DMOG-preconditioned hUC-MSCs more effectively promoted their homing and inhibited LPS-induced fibrosis at the maternal–fetal interface. Apart from suppressing inflammatory factors in the serum of pregnant mice, DMOG-preconditioned hUC-MSCs can downregulate the mRNA levels of Il2, Il1b, Tnfa, Il5 and Il9 (P < 0.01), which are pro-inflammatory cytokines secreted by M1 macrophages; and simultaneously upregulate the expression of Cd206 and Pparg (P < 0.01), which serve as the cell surface and nuclear receptors of M2 macrophages in the embryos. Immunofluorescence further verified that the transplantation of DMOG-preconditioned hUC-MSCs could increase the expression of CD206 in embryos. Therefore, DMOG-preconditioned hUC-MSCs might prevent EPL by promoting the transformation of M1 into M2 macrophages.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 9 | 9 | 9 |
PDF Downloads | 11 | 11 | 11 |