Autonomous follicle quality control mechanisms: innate immune signaling capabilities of granulosa cells

in Reproduction
Authors:
Prianka H Hashim Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

Search for other papers by Prianka H Hashim in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2959-8416
,
Madeline J Perry Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

Search for other papers by Madeline J Perry in
Current site
Google Scholar
PubMed
Close
,
Michele T Pritchard Department of Pharmacology, Toxicology and Therapeutics, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA

Search for other papers by Michele T Pritchard in
Current site
Google Scholar
PubMed
Close
,
Jennifer L Gerton Department of Pharmacology, Toxicology and Therapeutics, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
Stowers Institute for Medical Research, Kansas City, Missouri, USA

Search for other papers by Jennifer L Gerton in
Current site
Google Scholar
PubMed
Close
, and
Francesca E Duncan Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

Search for other papers by Francesca E Duncan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3756-9394

Correspondence should be addressed to F E Duncan: f-duncan@northwestern.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

We synthesize current evidence that granulosa cells possess unique innate immune signaling capabilities. We suggest the novel concept that this serves as a quality control surveillance mechanism by integrating signals from the oocyte and ovarian microenvironment to prevent poor-quality follicles from producing gametes that contribute to the next generation.

 

  • Collapse
  • Expand
  • Barbosa MC , Grosso RA & Fader CM 2019 Hallmarks of aging: an autophagic perspective. Front Endocrinol 9 790. (https://doi.org/10.3389/fendo.2018.00790)

  • Biswas A , Ng BH , Prabhakaran VS , et al. 2022 Squeezing the eggs to grow: the mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 10 1038107. (https://doi.org/10.3389/fcell.2022.1038107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Briley SM , Jasti S , Mccracken JM , et al. 2016 Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction 152 245260. (https://doi.org/10.1530/rep-16-0129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi Y , Bowman JW & Jung JU 2018 Autophagy during viral infection – a double-edged sword. Nat Rev Microbiol 16 341354. (https://doi.org/10.1038/s41579-018-0003-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clarke HJ 2018 Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdiscip Rev Dev Biol 7 e294. (https://doi.org/10.1002/wdev.294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Demine S , Schiavo AA , Marin-Canas S , et al. 2020 Pro-inflammatory cytokines induce cell death, inflammatory responses, and endoplasmic reticulum stress in human iPSC-derived beta cells. Stem Cell Res Ther 11 7. (https://doi.org/10.1186/s13287-019-1523-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doherty CA , Amargant F , Shvartsman SY , et al. 2022 Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila. Trends Cell Biol 32 311323. (https://doi.org/10.1016/j.tcb.2021.11.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dou J , Liu X , Yang L , et al. 2022 Ferroptosis interaction with inflammatory microenvironments: mechanism, biology, and treatment. Biomed Pharmacother 155 113711. (https://doi.org/10.1016/j.biopha.2022.113711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duncan FE , Jasti S , Paulson A , et al. 2017 Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell 16 13811393. (https://doi.org/10.1111/acel.12676)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan H , Ren Z , Xu C , et al. 2021 Chromatin accessibility and transcriptomic alterations in murine ovarian granulosa cells upon deoxynivalenol exposure. Cells 10 2818. (https://doi.org/10.3390/cells10112818)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ge Y , Huang M & Yao YM 2018 Autophagy and proinflammatory cytokines: interactions and clinical implications. Cytokine Growth Factor Rev 43 3846. (https://doi.org/10.1016/j.cytogfr.2018.07.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herath S , Williams EJ , Lilly ST , et al. 2007 Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134 683693. (https://doi.org/10.1530/rep-07-0229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hummitzsch K , Anderson RA , Wilhelm D , et al. 2015 Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 36 6591. (https://doi.org/10.1210/er.2014-1079)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim LA , Kramer JM , Williams RS , et al. 2016 Human granulosa-luteal cells initiate an innate immune response to pathogen-associated molecules. Reproduction 152 261270. (https://doi.org/10.1530/rep-15-0573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang TH , Kang KS & Lee SI 2022 Deoxynivalenol induces apoptosis via FOXO3a-signaling pathway in small-intestinal cells in pig. Toxics 10 535. (https://doi.org/10.3390/toxics10090535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kinnear HM , Tomaszewski CE , Chang AL , et al. 2020 The ovarian stroma as a new frontier. Reproduction 160 R25R39. (https://doi.org/10.1530/rep-19-0501)

  • Lliberos C , Liew SH , Mansell A , et al. 2020 The inflammasome contributes to depletion of the ovarian reserve during aging in mice. Front Cell Dev Biol 8 628473. (https://doi.org/10.3389/fcell.2020.628473)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nossing C & Ryan KM 2023 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 128 426431. (https://doi.org/10.1038/s41416-022-02020-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poulsen LC , Englund ALM , Wissing MLM , et al. 2019 Human granulosa cells function as innate immune cells executing an inflammatory reaction during ovulation: a microarray analysis. Mol Cell Endocrinol 486 3446. (https://doi.org/10.1016/j.mce.2019.02.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Priya K , Setty M , Babu UV , et al. 2021 Implications of environmental toxicants on ovarian follicles: how it can adversely affect the female fertility? Environ Sci Pollut Res Int 28 6792567939. (https://doi.org/10.1007/s11356-021-16489-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodgers RJ & Irving-Rodgers HF 2010 Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 82 10211029. (https://doi.org/10.1095/biolreprod.109.082941)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmeisser H , Bekisz J & Zoon KC 2014 New function of type I IFN: induction of autophagy. J Interferon Cytokine Res 34 7178. (https://doi.org/10.1089/jir.2013.0128)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scudieri A , Valbonetti L , Peric T , et al. 2024 Autophagy is involved in granulosa cell death and follicular atresia in Ewe ovaries. Theriogenology 226 236242. (https://doi.org/10.1016/j.theriogenology.2024.06.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shao T , Ke H , Liu R , et al. 2022 Autophagy regulates differentiation of ovarian granulosa cells through degradation of WT1. Autophagy 18 18641878. (https://doi.org/10.1080/15548627.2021.2005415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sturm A & Vellai T 2022 How does maternal age affect genomic stability in the offspring? Aging Cell 21 e13612. (https://doi.org/10.1111/acel.13612)

  • Tomac J , Mazor M , Lisnić B , et al. 2021 Viral infection of the ovaries compromises pregnancy and reveals innate immune mechanisms protecting fertility. Immunity 54 14781493 e6. (https://doi.org/10.1016/j.immuni.2021.04.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Typiak M & Żurawa‐Janicka D 2024 Not an immune cell, but they may act like one-cells with immune properties outside the immune system. Immunol Cell Biol 102 487499. (https://doi.org/10.1111/imcb.12752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang MP , Joshua B , Jin NY , et al. 2022 Ferroptosis in viral infection: the unexplored possibility. Acta Pharmacol Sin 43 19051915. (https://doi.org/10.1038/s41401-021-00814-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y , Pattarawat P , Zhang J , et al. 2023 Effects of cyanobacterial harmful algal bloom toxin microcystin-LR on gonadotropin-dependent ovarian follicle maturation and ovulation in mice. Environ Health Perspect 131 67010. (https://doi.org/10.1289/ehp12034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H , Ma L , Su W , et al. 2025 NLRP3 inflammasome in health and disease (Review). Int J Mol Med 55 48. (https://doi.org/10.3892/ijmm.2025.5489)

  • Wasserzug‐Pash P , Rothman R , Reich E , et al. 2022 Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging Cell 21 e13568. (https://doi.org/10.1111/acel.13568)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan K , Feng D , Liang J , et al. 2017 Cytosolic DNA sensor-initiated innate immune responses in mouse ovarian granulosa cells. Reproduction 153 821834. (https://doi.org/10.1530/rep-16-0674)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao X , Liu W , Xie Y , et al. 2023a Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 14 1219045. (https://doi.org/10.3389/fphys.2023.1219045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao Y , Wang B , Jiang Y , et al. 2023b The mechanisms crosstalk and therapeutic opportunities between ferroptosis and ovary diseases. Front Endocrinol 14 1194089. (https://doi.org/10.3389/fendo.2023.1194089)

    • PubMed
    • Search Google Scholar
    • Export Citation