GATA3 is not required for sheep trophectoderm development, but it plays a role in post-hatching epiblast survival

in Reproduction
Authors:
Nuria Martínez de los Reyes Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Nuria Martínez de los Reyes in
Current site
Google Scholar
PubMed
Close
,
Inés Flores-Borobia Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Inés Flores-Borobia in
Current site
Google Scholar
PubMed
Close
,
Leopoldo González-Brusi Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Leopoldo González-Brusi in
Current site
Google Scholar
PubMed
Close
,
Beatriz Galiano-Cogolludo Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Beatriz Galiano-Cogolludo in
Current site
Google Scholar
PubMed
Close
,
Pilar Marigorta Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Pilar Marigorta in
Current site
Google Scholar
PubMed
Close
,
Adolfo Toledano-Díaz Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Adolfo Toledano-Díaz in
Current site
Google Scholar
PubMed
Close
,
Julián Santiago-Moreno Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Julián Santiago-Moreno in
Current site
Google Scholar
PubMed
Close
,
Pablo Bermejo-Álvarez Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Pablo Bermejo-Álvarez in
Current site
Google Scholar
PubMed
Close
, and
Priscila Ramos-Ibeas Animal Reproduction Department, INIA, CSIC, Madrid, Spain

Search for other papers by Priscila Ramos-Ibeas in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to P Ramos-Ibeas: ramos.priscila@inia.csic.es
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

GATA3 is a transcription factor exclusively expressed by the trophectoderm. In this paper, we demonstrate that although GATA3 ablation is dispensable for trophectoderm specification and blastocyst formation in sheep, its ablation negatively affects epiblast survival during post-hatching development, making the first such observation in non-rodent mammals.

Abstract

Early embryo mortality represents a major challenge in livestock production, leading to significant economic losses. However, the molecular determinants underpinning early embryo development in these species remain poorly understood. GATA3 is a key transcription factor exclusively expressed by the trophectoderm (TE) in mammalian embryos. Although its ablation does not impede trophectoderm differentiation or blastocyst formation in mice, it is lethal at later developmental stages. Here, we aimed to investigate the role of GATA3 in ovine pre- and post-hatching development in vitro as well as during conceptus elongation in vivo. By generating GATA3 knockout (KO) embryos, we confirmed that GATA3 is dispensable for TE specification and blastocyst formation in ovine. GATA3 ablation did not impact developmental rates or TE development at post-hatching stages developed in vitro but it significantly reduced epiblast survival. Following embryo transfers to evaluate the effect of GATA3 ablation at later stages, the development of extraembryonic membranes (TE and hypoblast) during conceptus elongation was unaffected by GATA3 loss. However, a significantly reduced proportion of conceptuses developed an embryonic disc after GATA3 ablation. These findings indicate that GATA3 may play a previously unrecognised role in supporting epiblast development beyond the blastocyst stage in ovine.

 

  • Collapse
  • Expand
  • Alberio R 2020 Regulation of cell fate decisions in early mammalian embryos. Annu Rev Anim Biosci 8 377393. (https://doi.org/10.1146/annurev-animal-021419-083841)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bai H , Sakurai T , Someya Y , et al. 2011b Regulation of trophoblast-specific factors by GATA2 and GATA3 in bovine trophoblast CT-1 cells. J Reprod Dev 57 518525. (https://doi.org/10.1262/jrd.10-186k)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berg DK , van Leeuwen J , Beaumont S , et al. 2010 Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology 73 250260. (https://doi.org/10.1016/j.theriogenology.2009.09.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berg DK , Smith CS , Pearton DJ , et al. 2011 Trophectoderm lineage determination in cattle. Dev Cell 20 244255. (https://doi.org/10.1016/j.devcel.2011.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brooks K , Burns G & Spencer TE 2014 Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J Anim Sci Biotechnol 5 53. (https://doi.org/10.1186/2049-1891-5-53)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cauffman G , Van de Velde H , Liebaers I , et al. 2005 Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod 11 173181. (https://doi.org/10.1093/molehr/gah155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chazaud C & Yamanaka Y 2016 Lineage specification in the mouse preimplantation embryo. Development 143 10631074. (https://doi.org/10.1242/dev.128314)

  • Concordet JP & Haeussler M 2018 CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46 W242W245. (https://doi.org/10.1093/nar/gky354)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diskin MG & Morris DG 2008 Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim 43 (Supplement 2) 260267. (https://doi.org/10.1111/j.1439-0531.2008.01171.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diskin MG , Parr MH & Morris DG 2011 Embryo death in cattle: an update. Reprod Fertil Dev 24 244251. (https://doi.org/10.1071/rd11914)

  • Ealy AD , Wooldridge LK & McCoski SR 2019 Board invited review: post-transfer consequences of in vitro-produced embryos in cattle. J Anim Sci 97 25552568. (https://doi.org/10.1093/jas/skz116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garrison E & Marth G 2012 Haplotype-based variant detection from short- read sequencing. arXiv. (https://doi.org/10.48550/arXiv.1207.3907)

  • Gerri C , McCarthy A , Alanis-Lobato G , et al. 2020 Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587 443447. (https://doi.org/10.1038/s41586-020-2759-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goissis MD & Cibelli JB 2014 Functional characterization of CDX2 during bovine preimplantation development in vitro. Mol Reprod Dev 81 962970. (https://doi.org/10.1002/mrd.22415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • González-Brusi L , Martínez de los Reyes N , Carvajal-Serna M , et al. 2024 A single-cell transcriptomic atlas of sheep gastrulation and conceptus elongation. Proceedings 40th Scientific Meeting Association Of Embryo Technology in Europe (AETE).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guillomot M , Turbe A , Hue I , et al. 2004 Staging of ovine embryos and expression of the T-box genes brachyury and eomesodermin around gastrulation. Reproduction 127 491501. (https://doi.org/10.1530/rep.1.00057)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Home P , Kumar RP , Ganguly A , et al. 2017 Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development 144 876888. (https://doi.org/10.1242/dev.145318)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirchhof N , Carnwath JW , Lemme E , et al. 2000 Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63 16981705. (https://doi.org/10.1095/biolreprod63.6.1698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krendl C , Shaposhnikov D , Rishko V , et al. 2017 GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci U S A 114 E9579E9588. (https://doi.org/10.1073/pnas.1708341114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuijk EW , Du Puy L , Van Tol HT , et al. 2008 Differences in early lineage segregation between mammals. Dev Dyn 237 918927. (https://doi.org/10.1002/dvdy.21480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurek D , Garinis GA , van Doorninck JH , et al. 2007 Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development 134 261272. (https://doi.org/10.1242/dev.02721)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamas-Toranzo I , Galiano-Cogolludo B , Cornudella-Ardiaca F , et al. 2019 Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 9 14900. (https://doi.org/10.1038/s41598-019-51366-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H & Durbin R 2010 Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26 589595. (https://doi.org/10.1093/bioinformatics/btp698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H , Handsaker B , Wysoker A , et al. 2009 The sequence alignment/map format and SAMtools. Bioinformatics 25 20782079. (https://doi.org/10.1093/bioinformatics/btp352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liang RT , Limesand SW & Anthony RV 1999 Structure and transcriptional regulation of the ovine placental lactogen gene. Eur J Biochem 265 883895. (https://doi.org/10.1046/j.1432-1327.1999.00790.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma GT , Roth ME , Groskopf JC , et al. 1997 GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 124 907914. (https://doi.org/10.1242/dev.124.4.907)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martínez de Los Reyes N , Flores-Borobia I , Carvajal-Serna M , et al. 2024 MEK signalling pathway is required for hypoblast specification and migration in ovine. Reproduction 167 e240003. (https://doi.org/10.1530/rep-24-0003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Niakan KK & Eggan K 2013 Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 375 5464. (https://doi.org/10.1016/j.ydbio.2012.12.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishioka N , Yamamoto S , Kiyonari H , et al. 2008 Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125 270283. (https://doi.org/10.1016/j.mod.2007.11.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishiyama A , Xin L , Sharov AA , et al. 2009 Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell 5 420433. (https://doi.org/10.1016/j.stem.2009.07.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Niwa H , Toyooka Y , Shimosato D , et al. 2005 Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123 917929. (https://doi.org/10.1016/j.cell.2005.08.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pandolfi PP , Roth ME , Karis A , et al. 1995 Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11 4044. (https://doi.org/10.1038/ng0995-40)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez-Gomez A , Gonzalez-Brusi L , Bermejo-Alvarez P , et al. 2021a Lineage differentiation markers as a proxy for embryo viability in farm ungulates. Front Vet Sci 8 680539. (https://doi.org/10.3389/fvets.2021.680539)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez-Gómez A , González-Brusi L , Muniesa-Martínez I , et al. 2021b Trascription factor TEAD4 is not required for bovine blastocyst formation. Reprod Fertil Dev 34 259260. (https://doi.org/10.1071/rdv34n2ab49)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez-Gómez A , González-Brusi L , Flores-Borobia I , et al. 2024 TEAD4 role in trophectoderm commitment and development is not conserved in non-rodent mammals. Development 151 dev202993. (https://doi.org/10.1242/dev.202993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ralston A , Cox BJ , Nishioka N , et al. 2010 Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137 395403. (https://doi.org/10.1242/dev.038828)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P , Sang F , Zhu Q , et al. 2019 Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 10 500. (https://doi.org/10.1038/s41467-019-08387-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P , Lamas-Toranzo I , Martínez-Moro Á , et al. 2020 Embryonic disc formation following post-hatching bovine embryo development in vitro. Reproduction 160 579589. (https://doi.org/10.1530/rep-20-0243)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramos-Ibeas P , Gonzalez-Brusi L , Used MT , et al. 2022 In vitro culture of ovine embryos up to early gastrulating stages. Development 149 dev199743. (https://doi.org/10.1242/dev.199743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ribeiro ES , Greco LF , Bisinotto RS , et al. 2016 Biology of preimplantation conceptus at the onset of elongation in dairy cows. Biol Reprod 94 97. (https://doi.org/10.1095/biolreprod.115.134908)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rossant J 2011 Developmental biology: a mouse is not a cow. Nature 471 457458. (https://doi.org/10.1038/471457a)

  • Scatolin GN , Ming H , Wang Y , et al. 2024 Single-cell transcriptional landscapes of bovine peri-implantation development. iScience 27 109605. (https://doi.org/10.1016/j.isci.2024.109605)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schindelin J , Arganda-Carreras I , Frise E , et al. 2012 Fiji: an open-source platform for biological-image analysis. Nat Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi Y , Hu B , Wang Z , et al. 2023 Functional role of GATA3 and CDX2 in lineage specification during bovine early embryonic development. Reproduction 165 325333. (https://doi.org/10.1530/rep-22-0269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simpson L , Strange A , Klisch D , et al. 2024 A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat Commun 15 5210. (https://doi.org/10.1038/s41467-024-49407-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stamatiadis P , Cosemans G , Boel A , et al. 2022 TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo. Hum Reprod 37 17601773. (https://doi.org/10.1093/humrep/deac138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strumpf D , Mao CA , Yamanaka Y , et al. 2005 Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132 20932102. (https://doi.org/10.1242/dev.01801)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorvaldsdóttir H , Robinson J & Mesirov J 2013 Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings Bioinf 14 178192. (https://doi.org/10.1093/bib/bbs017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu X , Shi Y , Hu B , et al. 2024 TEAD4 regulates KRT8 and YAP in preimplantation embryos in mice but not in cattle. Reproduction 167 e230322. (https://doi.org/10.1530/rep-23-0322)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yagi R , Kohn MJ , Karavanova I , et al. 2007 Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134 38273836. (https://doi.org/10.1242/dev.010223)

    • PubMed
    • Search Google Scholar
    • Export Citation