Browse

You are looking at 41 - 50 of 12,550 items for

  • Refine by Access: All content x
Clear All
Restricted access

María L Oróstica, Patricia Reuquen, Emanuel Guajardo-Correa, Alexis Parada-Bustamante, Hugo Cardenas, and Pedro A Orihuela

In brief

Mating shuts down the 2-methoxyestradiol (2ME) nongenomic pathway that accelerates oviductal egg transport in the rat. This study shows that sperm cells, but not vaginocervical stimulation, utilize TNF-α to shut down this 2ME nongenomic pathway.

Abstract

The transport of oocytes or embryos throughout the oviduct to the implantation site in the uterus is defined as egg transport. In the rat, 2-methoxyestradiol (2ME) accelerates egg transport through the oviduct via a nongenomic pathway. Mating is known to shut down this 2ME pathway and then trigger an estradiol genomic pathway that accelerates egg transport. Here, we tested whether intrauterine insemination (IUI) or vaginocervical stimulation (VCS) shuts down the 2ME nongenomic pathway that accelerates egg transport, and if these mating components require tumor necrosis factor alpha (TNF-α). Levels of TNF-α and the mRNA for TNF-α receptors were measured in the oviduct of IUI or VCS rats. The tissue distribution of TNF-α receptor proteins and the concentration of the mRNA for catechol-O-methyl transferase (Comt) and 2ME were also analyzed in the oviduct. Finally, we assessed whether 2ME accelerates egg transport in IUI or VCS rats previously treated with the TNF-α antagonist W9P9QY. Results show that IUI, but not VCS, increased TNF-α and their receptors in the oviduct. IUI and VCS did not change the tissue distribution of TNF-α receptors; however, both decreased the oviductal concentration of Comt and 2ME. IUI and VCS each blocked the 2ME-induced egg transport acceleration; however, only the IUI was antagonized by the TNF-α antagonist. We concluded that IUI and VCS inhibit the 2ME nongenomic pathway that accelerates egg transport; however, the vias of action are distinct, with a TNF-α increase on spermatozoa presence being required for the shutdown of the 2ME pathway.

Free access

Adrian Villalba, Jon Rueda, and Íñigo de Miguel Beriain

In brief

Two independent groups have reported the development of ‘artificial embryos’. Those are in vitro models made of mouse embryonic stem cells, without the need for egg or sperm, and grown ex utero without requiring implantation. This system might open new venues in bioethical research if human cells show the ability to replicate this system.

Abstract

The recent publications reported in 2022 reveal the possibility of obtaining mouse embryos without the need for egg or sperm. These ‘artificial embryos’ can recapitulate some stages of development ex utero – from neurulation to organogenesis – without implantation. Synthetic mouse embryos might serve as a valuable model to gain further insights into early developmental stages. Indeed, it is expected for these models to be replicated by employing human cells. This promising research raises ethical issues and expands the horizon of ethics in regard to the development of the human embryo. From this point of view, we state some of the new open venues for bioethical research.

Restricted access

Qi Qiu, Yijing Li, Sze Wan Fong, Kai Chuen Lee, Andy Chun Hang Chen, Hanzhang Ruan, Kai-Fai Lee, Hang Wun Raymond Li, Ernest Hung Yu Ng, William Shu Biu Yeung, and Yin lau Lee

In brief

Implantation failure can occur even after the transfer of good-quality embryos. This study showed that the migration of human endometrial stromal cells towards embryonic trophoblasts is higher in women with live births in the first in vitro fertilization cycle than those with repeated implantation failure, suggesting that the chemotactic response of stroma cells is associated with successful pregnancy.

Abstract

The success rate of in vitro fertilization (IVF) remains limited in some women despite transfers of good-quality embryos in repeated attempts. There is no reliable tool for assessing endometrial receptivity. This study aimed to assess the interaction between decidualized human primary endometrial stromal cells (1°-EnSC) and human embryonic stem cell-derived trophoblastic spheroids (BAP-EB) and to compare the invasion ability of decidualized 1°-EnSC towards BAP-EB between women attaining live birth in the first IVF cycle and those with repeated implantation failure (RIF). The invasion of the decidualized human endometrial cell line (T-HESC) and 1°-EnSC towards BAP-EB was studied. Real-time quantitative PCR and immunocytochemistry were employed to determine the expression of decidualization markers at mRNA and protein levels, respectively. Trophoblast-like BAP-EB-96h, instead of early trophectoderm (TE)-like BAP-EB-48h, facilitated the invasion ability of decidualized T-HESC and decidualized 1°-EnSC. Human chorionic gonadotropin at supra-physiological levels promoted the invasiveness of decidualized 1°-EnSC. The extent of BAP-EB-96h-induced invasion was significantly stronger in decidualized 1°-EnSC from women who had a live birth in the first IVF cycle when compared to those with RIF. While no difference was found in the expression of decidualization markers, PRL and IGFBP1 among two groups of women, significantly lower HLA-B was detected in the non-decidualized and decidualized 1°-EnSC from women with RIF. Collectively, the findings suggested that the invasion of decidualized 1°-EnSC towards trophoblast-like BAP-EB-96h was higher in women who had a live birth in the first IVF cycle than those with RIF.

Open access

Yan Shi, Bingjie Hu, Zizengchen Wang, Xiaotong Wu, Lei Luo, Shuang Li, Shaohua Wang, Kun Zhang, and Huanan Wang

In brief

The lineage specification during early embryonic development in cattle remains largely elusive. The present study determines the effects of trophectoderm-associated factors GATA3 and CDX2 on lineage specification during bovine early embryonic development.

Abstract

Current understandings of the initiation of the trophectoderm (TE) program during mammalian embryonic development lack evidence of how TE-associated factors such as GATA3 and CDX2 participate in bovine lineage specification. In this study, we describe the effects of TE-associated factors on the expression of lineage specification marker genes such as SOX2, OCT4, NANOG, GATA6, and SOX17, by using cytosine base editor system. We successfully knockout GATA3 or CDX2 in bovine embryos with a robust efficiency. However, GATA3 or CDX2 deletion does not affect the developmental potential of embryos to reach the blastocyst stage. Interestingly, GATA3 deletion downregulates the NANOG expression in bovine blastocysts. Further analysis of the mosaic embryos shows that GATA3 is required for NANOG in the TE of bovine blastocysts. Single blastocyst RNA-seq analysis reveals that GATA3 deletion disrupts the transcriptome in bovine blastocysts. Altogether, we propose that GATA3 plays an important role in maintaining TE lineage program in bovine embryos and the functional role of GATA3 is species-specific.

Restricted access

Yuki Yamamoto, Maho Kurokawa, Taiji Ogawa, Sayaka Kubota, and Koji Kimura

In brief

Spontaneous contraction of oviductal smooth muscle is essential for gamete transport to the fertilization site in mammals. This study sheds light on the mechanism of elevated contraction amplitude in the bovine oviductal isthmus just before ovulation.

Abstract

Rhythmic contraction of the oviducts is essential for transporting gametes and embryos at peri-ovulation; however, its regulatory mechanism during the estrous cycle is unclear. Meanwhile, it is reported that ion currents regulate muscle contraction. Our study aimed to clarify the involvement of ion channels and gap junctions in regulating oviductal motility during the estrous cycle in cattle. The isthmic sections of bovine oviducts collected just after ovulation (0–4 days after ovulation), at the mid-late luteal stage (10–17 days), and at the follicular stage (1–3 days before ovulation) were used in the experiments. The frequency and amplitude of contraction of the oviductal strips in the longitudinal direction were examined using the Magnus system. The frequency was not different among the estrous stages. Conversely, the amplitude was significantly higher at the follicular stage. The blockers of voltage-dependent calcium channels, both IP3 receptor and ryanodine receptors, chloride channel, and gap junction reduced the amplitude. Additionally, mRNA and protein expression of GJA1, a component of the gap junction, in the smooth muscle tissues of the oviductal isthmus were significantly higher in the follicular stage. In addition, estradiol-17β (E2; 1.0 ng/mL) significantly increased GJA1 mRNA expression in cultured smooth muscle tissues after 24 h and GJA1 protein expression in cultured smooth muscle cells after 48 h. These results suggest that local levels of E2 in the oviductal isthmus ipsilateral to an ovary with a dominant follicle support the increased contraction amplitude of bovine ipsilateral oviducts by elevating the gap junction expression.

Open access

Evelyn A Weaver and Ramesh Ramachandran

In brief

The pathophysiology of the ovarian dysfunction encountered in broiler breeder hens remains poorly understood but is similar to a condition in women known as polycystic ovary syndrome. This study reveals that metformin may provide a cheap and effective method of improving ovarian function in broiler breeder hens.

Abstract

Broiler breeder hens, the parent stock of commercial broiler chickens, have poor reproductive efficiency associated with aberrant and excessive recruitment of ovarian follicles which results in sub-optimal egg production, fertility, and hatchability. The reproductive dysfunction observed in these hens resembles polycystic ovary syndrome in women, a condition wherein metformin is prescribed as a treatment. The main objectives of this study were to determine the effect of metformin on body weight, abdominal fat pad weight, ovarian function, and plasma steroid hormone concentrations. Broiler breeder hens were treated with 0, 25, 50, or 75 mg/kg body weight of metformin mixed in the diet for 40 weeks (n =  45 hens/treatment; 2565 weeks of age). At 65 weeks of age, hens that received the highest dose of metformin had significantly lower body and abdominal fat pad weights (P  < 0.05) than the control. Metformin treatment, at all levels, normalized the preovulatory and prehierarchical ovarian follicular hierarchy. Metformin (50 or 75 mg/kg body weight) significantly increased the total number of eggs laid per hen during the entire production period and these hens had significantly greater fertility and hatchability at 65 weeks of age compared to the control (P  < 0.05). Metformin treatment at all levels altered the plasma profile of reproductive hormones, with significantly lower plasma testosterone concentrations and a decreased testosterone to androstenedione ratio in hens that received metformin (P  < 0.05). Future studies should focus on the mechanisms underlying the beneficial effects of metformin in improving the reproductive efficiency of broiler breeder hens.

Restricted access

I Viola, P Toschi, I Manenti, P Accornero, and M Baratta

In brief

Fibroblast growth factor-2 (FGF2) is essential for early placenta development in sheep. This study shows that the mechanistic target of rapamycin is the key modulator of trophoblast adaptive response under FGF2 modulation.

Abstract

During the early stage of placentation in sheep, normal conceptus development is affected by trophoblast cell functionality, whose dysregulation results in early pregnancy loss. Trophoblast metabolism is supported mainly by histotrophic factors, including fibroblast growth factor-2 (FGF2), which are involved in cell differentiation and function through the modulation of specific cellular mechanisms. The mechanistic target of rapamycin (mTOR) is known as a cellular ‘nutrient sensor’, but its downstream regulation remains poorly understood. The hypothesis was that during trophoblast development, the FGF2 effect is mediated by mTOR signalling pathway modulation. Primary trophoblast cells from 21-day-old sheep placenta were characterised and subjected to FGF2 and rapamycin treatment to study the effects on cell functionality and gene and protein expression profiles. The model showed mainly mononuclear cells with epithelial cell-like growth and placental morphological properties, expressing typical trophoblast markers. FGF2 promoted cell proliferation and migration under normal culture conditions, whereas mTOR inhibition reversed this effect. When the mTOR signalling pathway was activated, FGF2 failed to influence invasion activity. mTOR inhibition significantly reduced cell motility, but FGF2 supplementation restored motility even when mTOR was inhibited. Interestingly, mTOR inhibition influenced endocrine trophoblast marker regulation. Although FGF2 supplementation did not affect ovine placenta lactogen expression, as observed in the control, interferon-tau was drastically reduced. This study provides new insights into the mechanism underlying mTOR inhibitory effects on trophoblast cell functionality. In addition, as mTOR is involved in the expression of hormonal trophoblast markers, it may play a crucial role in early placenta growth and fetal–maternal crosstalk.

Restricted access

Pushpa Singh and Deepa Bhartiya

In brief

Incidence of uteropathies has increased in recent times, possibly due to exposure to endocrine-disrupting chemicals during early development. The present study shows that various uteropathies like endometrial cancer, adenomyosis, and endometriosis are interlinked and occur due to the dysfunction of tissue-resident, very small embryonic-like stem cells (VSELs).

Abstract

Underlying pathomechanisms leading to the initiation of uteropathies including non-receptive endometrium, hyperplasia, adenomyosis, endometriosis, fibroids, and cancer remain elusive. Two populations of stem cells exist in mouse uterus including pluripotent VSELs and ‘progenitors’ termed endometrial stem cells (EnSCs) which express ERα, ERβ, PR, and FSHR, participate in the regular remodelling, and maintain life-long homeostasis. The present study aimed to delineate possible stem cell origins for various uteropathies. For this, mouse pups were treated with oestradiol or diethylstilbestrol and were studied for adult onset of various uteropathies. Treatment resulted in disrupted oestrous cycles, reduced uterine weights, and marked hyperplasia in both epithelial and myometrial compartments, and the stromal compartment was also affected. VSELs were increased in numbers as judged by flow cytometry and increased expression of transcripts specific for Oct-4A, Sox-2, and Nanog, but their further differentiation into a receptive endometrium was affected. Reduced 5-methyl cytosine expression suggested global hypomethylation and was associated with several oncogenic events including loss of tumour-suppressor genes (Pten, p53), dysregulated DNA mismatch repair axis, and repair enzymes. Stem cells were epigenetically altered and showed increased expression of DNMTs, loss of imprinting loci (Igf2-H19, Dlk1-Meg3), and Ezh2. Increased co-expression of CD166 and ALDHA1 with OCT-4 in stem cells was associated with increased Esr-2 and reduced Pr in the endometrium, while both were several folds upregulated in the myometrium. Study results suggest that various uteropathies ensue due to the dysfunction of tissue-resident stem cells and provide huge scope for further research.

Free access

Helena Fulka, Pasqualino Loi, Marta Czernik, Azim Surani, and Josef Fulka

In brief

Understanding the establishment of post-fertilization totipotency has broad implications for modern biotechnologies. This review summarizes the current knowledge of putative egg components governing this process following natural fertilization and after somatic cell nuclear transfer.

Abstract

The mammalian oocyte is a unique cell, and comprehending its physiology and biology is essential for understanding fertilization, totipotency and early events of embryogenesis. Consequently, research in these areas influences the outcomes of various technologies, for example, the production and conservation of laboratory and large animals with rare and valuable genotypes, the rescue of the species near extinction, as well as success in human assisted reproduction. Nevertheless, even the most advanced and sophisticated reproductive technologies of today do not always guarantee a favorable outcome. Elucidating the interactions of oocyte components with its natural partner cell – the sperm or an ‘unnatural’ somatic nucleus, when the somatic cell nucleus transfer is used is essential for understanding how totipotency is established and thus defining the requirements for normal development. One of the crucial aspects is the stoichiometry of different reprogramming and remodeling factors present in the oocyte and their balance. Here, we discuss how these factors, in combination, may lead to the formation of a new organism. We focus on the laboratory mouse and its genetic models, as this species has been instrumental in shaping our understanding of early post-fertilization events.

Free access

Giulia Perillo, Keigo Shibata, and Pei-Hsuan Wu

In brief

Mouse PIWI-interacting RNAs (piRNAs) are indispensable for spermatogenesis, but whether these small RNAs serve any function beyond gametogenesis is rarely explored. This review summarizes recent findings that demonstrated a requirement for piRNAs in sperm maturation and discusses a potential intergenerational role for paternal piRNAs.

Abstract

Unique to animals, PIWI-interacting RNAs (piRNAs) defend organisms against threats to germline integrity evoked by transposons, retroviruses, and inappropriate expression of protein-coding genes. Characterization of mouse piRNAs and studies of more than a dozen piRNA pathway protein mutants detailed in the past 15 years have firmly established an essential role for piRNAs in male fertility. Despite their vital function in spermatogenesis, mammalian piRNAs were thought to be dispensable beyond gamete formation because all piRNA pathway protein mouse mutants are invariably sterile and do not produce sperm. In contrast to the specialized purpose of piRNAs in gamete formation, tRNA-derived fragments and microRNAs have been the focus of research in RNA-mediated paternal contribution, providing additional examples of the versatility of non-coding RNAs. In recent years, the direct elimination of mouse piRNAs using CRISPR/Cas revealed their extended function in post-testicular sperm maturation. An intergenerational contribution from paternal piRNAs has also been proposed. Together with insights into piRNAs in oocytes and early embryos in mice and other mammals, these newly proposed functions of mammalian piRNAs invite further investigations of piRNA dynamics during sperm maturation and fertilization as well as their roles in reproduction beyond gametogenesis.