Browse

You are looking at 91 - 100 of 117 items for

  • Refine by Access: Open Access content only x
Clear All
Open access

Anne Vested, Cecilia H Ramlau-Hansen, Sjurdur F Olsen, Jens Peter Bonde, Henrik Støvring, Susanne L Kristensen, Thorhallur I Halldorsson, Panu Rantakokko, Hannu Kiviranta, Emil H Ernst, and Gunnar Toft

Persistent organochlorine pollutants (POPs) are ubiquitous, bioaccumulative compounds with potential endocrine-disrupting effects. They cross the placental barrier thereby resulting in in utero exposure of the developing fetus. The objective of this study was to investigate whether maternal serum concentrations of polychlorinated biphenyls (PCBs) and p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) during pregnancy are associated with son's semen quality and reproductive hormone levels. During 2008–2009, we recruited 176 male offspring from a Danish cohort of pregnant women who participated in a study in 1988–1989. Each provided semen and blood samples that were analyzed for sperm concentration, total sperm count, motility, and morphology, and reproductive hormone levels, respectively. The maternal blood samples were collected in pregnancy week 30 and were analyzed for the concentrations of six PCBs (PCB-118, -138, -153, -156, -170, and -180) and p,p′-DDE. The potential associations between in utero exposure to ΣPCBs (pmol/ml), Σdioxin like-(DL) PCBs (PCB-118 and -156) (pmol/ml), and p,p′-DDE and semen quality and reproductive hormone levels were investigated using multiple regression. Maternal median (range) exposure levels of ΣPCB, ΣDL-PCB, and p,p′-DDE were 10.0 (2.1–35.0) pmol/ml, 0.8 (0.2–2.7) pmol/ml, and 8.0 (0.7–55.3) pmol/ml, respectively, reflecting typical background exposure levels in the late 1980s in Denmark. Results suggested that in utero exposure to ΣPCB, ΣDL-PCB, and p,p′-DDE was not statistically significantly associated with semen quality measures or reproductive hormone levels. Thus, results based on maternal PCB and p,p′-DDE concentrations alone are not indicative of long-term consequences for male reproductive health; however, we cannot exclude that these POPs in concert with other endocrine-modulating compounds may have adverse effects.

Open access

B Fereydouni, C Drummer, N Aeckerle, S Schlatt, and R Behr

Oogonia are characterized by diploidy and mitotic proliferation. Human and mouse oogonia express several factors such as OCT4, which are characteristic of pluripotent cells. In human, almost all oogonia enter meiosis between weeks 9 and 22 of prenatal development or undergo mitotic arrest and subsequent elimination from the ovary. As a consequence, neonatal human ovaries generally lack oogonia. The same was found in neonatal ovaries of the rhesus monkey, a representative of the old world monkeys (Catarrhini). By contrast, proliferating oogonia were found in adult prosimians (now called Strepsirrhini), which is a group of ‘lower’ primates. The common marmoset monkey (Callithrix jacchus) belongs to the new world monkeys (Platyrrhini) and is increasingly used in reproductive biology and stem cell research. However, ovarian development in the marmoset monkey has not been widely investigated. Herein, we show that the neonatal marmoset ovary has an extremely immature histological appearance compared with the human ovary. It contains numerous oogonia expressing the pluripotency factors OCT4A, SALL4, and LIN28A (LIN28). The pluripotency factor-positive germ cells also express the proliferation marker MKI67 (Ki-67), which has previously been shown in the human ovary to be restricted to premeiotic germ cells. Together, the data demonstrate the primitiveness of the neonatal marmoset ovary compared with human. This study may introduce the marmoset monkey as a non-human primate model to experimentally study the aspects of primate primitive gonad development, follicle assembly, and germ cell biology in vivo.

Open access

Elizabeth A Bonney and Stephen A Brown

This review is an example of the use of an animal model to try to understand the immune biology of pregnancy. A well-known model of recurrent spontaneous pregnancy loss is put in clinical, historical, and theoretical context, with emphasis on T cell biology.

Open access

René Habert, Vincent Muczynski, Tiphany Grisin, Delphine Moison, Sébastien Messiaen, René Frydman, Alexandra Benachi, Géraldine Delbes, Romain Lambrot, Abdelali Lehraiki, Thierry N'Tumba-Byn, Marie-Justine Guerquin, Christine Levacher, Virginie Rouiller-Fabre, and Gabriel Livera

Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk.

Open access

Andreas Kortenkamp, Martin Scholze, and Sibylle Ermler

Several countries have experienced rises in cryptorchidisms, hypospadias and testicular germ cell cancer. The reasons for these trends are largely unknown, but Skakkebaek has proposed that these disorders form a testicular dysgenesis syndrome and can be traced to androgen insufficiency in foetal life. This suggests that antiandrogenic chemicals might contribute to risks, but few chemicals have been linked to these diseases in epidemiological studies. In animal studies with p,p -dichlorodiphenyldichloroethylene, effects typical of disruptions of male sexual differentiation became apparent when the foetal levels of this androgen receptor (AR) antagonist approached values associated with responses in in vitro assays. This prompted us to analyse whether the 22 chemicals with AR antagonistic properties would produce mixture effects in an in vitro AR antagonism assay when combined at concentrations found in human serum. Other antiandrogenic modalities could not be considered. Two scenarios were investigated, one representative of average serum levels reported in European countries, the other in line with levels towards the high exposures. In both situations, the in vitro potency of the 22 selected AR antagonists was too low to produce combined AR antagonistic effects at the concentrations found in human serum, although the high exposure scenario came quite close to measurable effects. Nevertheless, our analysis exposes an explanation gap which can only be bridged by conjuring up as yet undiscovered high potency AR antagonists or, alternatively, high exposures to unknown agents of average potency.

Open access

Yayoi Obata, Takuya Wakai, Satoshi Hara, and Tomohiro Kono

DNA methylation imprints that are established in spermatogenesis and oogenesis are essential for functional gametes. However, the mechanisms underlying gamete-specific imprinting remain unclear. In this study, we investigated whether male and female gametes derived from newborn mice are epigenetically plastic and whether DNA methylation imprints are influenced by the niche surrounding the nuclei of the gametes. When prospermatogonia possessing sperm-specific DNA methylation imprints were fused with enucleated fully grown oocytes and exposed to the ooplasm for 5–6 days, the DNA methylation status of the reconstituted oocytes remained identical to that of prospermatogonia for all the imprinted regions analysed. These results suggest that the imprinting status of prospermatogonia is stable and that the epigenome of prospermatogonia loses sexual plasticity. By contrast, when non-growing oocytes lacking oocyte-specific DNA methylation imprints were fused with enucleated fully grown oocytes and the reconstituted oocytes were then cultured for 5–6 days, the Igf2r, Kcnq1ot1 and, unexpectedly, H19/Igf2 differentially methylated regions (DMRs) were methylated. Methylation imprints were entirely absent in oocytes derived from 5-day-old mice, and H19/Igf2 DMR is usually methylated only in spermatogenesis. These findings indicate that in the nuclei of non-growing oocytes the chromatin conformation changes and becomes permissive to DNA methyltransferases in some DMRs and that mechanisms for maintaining non-methylated status at the H19/Igf2 DMR are lost upon long exposure to mature ooplasm.

Open access

Tamsin R M Lannagan, Martin R Wilson, Fiona Denison, Jane E Norman, Rob D Catalano, and Henry N Jabbour

The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1 and Prok2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16–19). Prok1 mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediators Il6, Il1b, Tnf, Cxcl2 and Cxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression of Prok1 or its receptor (Prokr1) in fetal membranes. These results suggest that although Prok1 exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes.

Open access

Theerawat Swangchan-Uthai, Qiusheng Chen, Sally E Kirton, Mark A Fenwick, Zhangrui Cheng, Joe Patton, Ali A Fouladi-Nashta, and D Claire Wathes

Uterine inflammation occurs after calving in association with extensive endometrial remodelling and bacterial contamination. If the inflammation persists, it leads to reduced fertility. Chronic endometritis is highly prevalent in high-yielding cows that experience negative energy balance (NEB) in early lactation. This study investigated the effect of NEB on the antimicrobial peptides S100A8 and S100A9 in involuting uteri collected 2 weeks post partum. Holstein-Friesian cows (six per treatment) were randomly allocated to two interventions designed to produce mild or severe NEB (MNEB and SNEB) status. Endometrial samples were examined histologically, and the presence of neutrophils, macrophages, lymphocytes and natural killer cells was confirmed using haematoxylin and eosin and immunostaining. SNEB cows had greater signs of uterine inflammation. Samples of previously gravid uterine horn were used to localise S100A8 and S100A9 by immunohistochemistry. Both S100 proteins were present in bovine endometrium with strong staining in epithelial and stromal cells and in infiltrated leucocytes. Immunostaining was significantly higher in SNEB cows along with increased numbers of segmented neutrophils. These results suggest that the metabolic changes of a post-partum cow suffering from NEB delay uterine involution and promote a chronic state of inflammation. We show that upregulation of S100A8 and S100A9 is clearly a key component of the early endometrial response to uterine infection. Further studies are warranted to link the extent of this response after calving to the likelihood of cows developing endometritis and to their subsequent fertility.

Open access

Sanda M Cretoiu, Dragos Cretoiu, Adela Marin, Beatrice Mihaela Radu, and Laurentiu M Popescu

Telocytes (TCs) have been described in various organs and species (www.telocytes.com) as cells with telopodes (Tps) – very long cellular extensions with an alternation of thin segments (podomers) and dilated portions (podoms). We examined TCs using electron microscopy (EM), immunohistochemistry (IHC), immunofluorescence (IF), time-lapse videomicroscopy and whole-cell patch voltage clamp. EM showed a three-dimensional network of dichotomous-branching Tps, a labyrinthine system with homocellular and heterocellular junctions. Tps release extracellular vesicles (mean diameter of 160.6±6.9 nm in non-pregnant myometrium and 171.6±4.6 nm in pregnant myometrium), sending macromolecular signals to neighbouring cells. Comparative measurements (non-pregnant and pregnant myometrium) of podomer thickness revealed values of 81.94±1.77 vs 75.53±1.81 nm, while the podoms' diameters were 268.6±8.27 vs 316.38±17.56 nm. IHC as well as IF revealed double c-kit and CD34 positive results. Time-lapse videomicroscopy of cell culture showed dynamic interactions between Tps and myocytes. In non-pregnant myometrium, patch-clamp recordings of TCs revealed a hyperpolarisation-activated chloride inward current with calcium dependence and the absence of L-type calcium channels. TCs seem to have no excitable properties similar to the surrounding smooth muscle cells (SMCs). In conclusion, this study shows the presence of TCs as a distinct cell type in human non-pregnant and pregnant myometrium and describes morphometric differences between the two physiological states. In addition, we provide a preliminary in vitro electrophysiological evaluation of the non-pregnant state, suggesting that TCs could influence timing of the contractile activity of SMCs.

Open access

Feng Cao, Atsushi Fukuda, Hiroshi Watanabe, and Tomohiro Kono

Somatic cell nuclear transfer, a technique used to generate clone embryos by transferring the nucleus of a somatic cell into an enucleated oocyte, is an excellent approach to study the reprogramming of the nuclei of differentiated cells. Here, we conducted a transcriptomic study by performing microarray analysis on single Sertoli cell nuclear transfer (SeCNT) embryos throughout preimplantation development. The extensive data collected from the oocyte to the blastocyst stage helped to identify specific genes that were incorrectly reprogrammed at each stage, thereby providing a novel perspective for understanding reprogramming progression in SeCNT embryos. This attempt provided an opportunity to discuss the possibility that ectopic gene expression could be involved in the developmental failure of SeCNT embryos. Network analysis at each stage suggested that in total, 127 networks were involved in developmental and functional disorders in SeCNT embryos. Furthermore, chromosome mapping using our time-lapse expression data highlighted temporal–spatial changes of the abnormal expression, showing the characteristic distribution of the genes on each chromosome. Thus, the present study revealed that the preimplantation development of SeCNT embryos appears normal; however, the progression of incorrect reprogramming is concealed throughout development.