Browse

You are looking at 1 - 10 of 89 items for

  • Open access x
Clear All
Open access

Rowena Smith, Susan J Pickering, Anna Kopakaki, Kj Thong, Richard A Anderson, and Chih-Jen Lin

Elucidating the mechanisms underpinning fertilisation is essential to optimising IVF procedures. One of the critical steps involves paternal chromatin reprogramming, in which compacted sperm chromatin packed by protamines is removed by oocyte factors and new histones, including histone H3.3, are incorporated. HIRA is the main H3.3 chaperone governing this protamine-to-histone exchange. Failure of this step results in abnormally fertilised zygotes containing only 1 pronucleus (1PN), in contrast to normal two-pronuclei (2PN) zygotes. 1PN zygotes are frequently observed in IVF treatments, but the genotype-phenotype correlation remains elusive. We investigated the maternal functions of two other molecules of the Hira complex, Cabin1 and Ubn1, in mouse. Loss-of-function Cabin1 and Ubn1 mouse models were developed: their zygotes displayed an abnormal 1PN zygote phenotype. We then studied human 1PN zygotes and found that the HIRA complex was absent in 1PN zygotes that lacked the male pronucleus. This shows that the role of the HIRA complex in male pronucleus formation potentially has coherence from mice to humans. Furthermore, rescue experiments in mouse showed that the abnormal 1PN phenotype derived from Hira mutants could be resolved by overexpression of HIRA. We have demonstrated that HIRA complex regulates male pronucleus formation in mice and is implicated in humans, that both CABIN1 and UBN1 components of the HIRA complex are equally essential for male pronucleus formation, and that rescue is feasible.

Open access

Yu Chen Zhang, Xiaoli Qin, Xiao Ling Ma, Hui-qin Mo, Shi Qin, Cheng-xi Zhang, Xiao-wei Wei, Xue-qing Liu, Yan Zhang, Fuju Tian, and Yi Lin

Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.

Open access

Heather Flanagan, Chih-Jen Lin, Lisa L Campbell, Paddy Horner, Andrew W Horne, and Norah Spears

Ectopic pregnancy (EP) is defined as the implantation of an embryo outside of the uterus and is a leading cause of first trimester maternal mortality and morbidity. This article discusses a possible role for epithelial to mesenchymal transition in the pathogenesis of EP, given the notable similarity of protein expression between the two processes.

Open access

Konstantina Nikolakopoulou and Margherita Y. Turco

Infertility is a common problem in modern societies with significant socio-psychological implications for women. Therapeutic interventions are often needed which, depending on the cause, can be either medical treatment, surgical procedures or assisted reproductive technology (ART). However, the treatment of infertility is not always successful due to our limited understanding of the preparation of the lining of the uterus, the endometrium, for pregnancy. The endometrium is of central importance for successful reproduction as it is the site of placental implantation providing the interface between the mother and baby. Due to the dynamic, structural and functional changes the endometrium undergoes throughout the menstrual cycle, it is challenging to study. A major advance is the establishment of 3D organoid models of the human endometrium to study this dynamic tissue in health and disease. In this review, we describe the changes that the human endometrium undergoes through the different phases of the menstrual cycle in preparation for pregnancy. We discuss defects in the processes of endometrial repair, decidualization and acquisition of receptivity that are associated with infertility. Organoids could be utilised to investigate the underlying cellular and molecular mechanisms occurring in non-pregnant endometrium and early pregnancy. These studies may lead to therapeutic applications that could transform the treatment of reproductive failure.

Open access

Yizi Wang, Minghui Chen, Jian Xu, Xinyan Liu, Yuwei Duan, Canquan Zhou, and Yanwen Xu

Luteinization is the event of corpus luteum formation, a way of follicle cells transformation and a process of steroidogenesis alteration. As the core clock gene, Bmal1 was involved in the regulation of ovulation process and luteal function afterwards. Till now, the underlying roles of luteinization played by Bmal1 remain unknown. To explore the unique role of Bmal1 in luteal steroidogenesis and its underlying pathway, we investigated the luteal hormone synthesis profile in Bmal1 knockout female mice. We found that luteal hormone synthesis was notably impaired, and phosphorylation of PI3K/NfκB pathway was significantly activated. Then, the results were verified in in vitro cultured cells, including isolated Bmal1 interference granulosa cells (GCs) and theca cells (TCs), respectively. Hormones levels of supernatant culture media and mRNA expressions of steroidogenesis-associated genes (star, Hsd3β2, cyp19a1 in GCs, Lhcgr, star, Hsd3β2, cyp17a1 in TCs) were mutually decreased, while the phosphorylation of PI3K/NfκB was promoted during in vitro luteinization. After PI3K specific-inhibitor LY294002 intervention, mRNA expressions of Lhcgr and Hsd3β2 were partially rescued in Bmal1 interference TCs, together with significantly increased androstenedione and T synthesis. Further exploration in TCs demonstrated BMAL1 interacted directly but negatively with NfκB p65 (RelA), a subunit which was supposed as a mediator in Bmal1-governed PI3K signaling regulation. Taken together, we verified the novel role of Bmal1 in luteal steroidogenesis, achieving by negative interplay with RelA-mediated PI3K/NfκB pathway.

Open access

Hui Li, Qianhui Huang, Yu Liu, and Lana X Garmire

Human placenta is a complex and heterogeneous organ interfacing between the mother and the fetus that supports fetal development. Alterations to placental structural components are associated with various pregnancy complications. To reveal the heterogeneity among various placenta cell types in normal and diseased placentas, as well as elucidate molecular interactions within a population of placental cells, a new genomics technology called single cell RNA-seq (or scRNA-seq) has been employed in the last couple of years. Here we review the principles of scRNA-seq technology, and summarize the recent human placenta studies at scRNA-seq level across gestational ages as well as in pregnancy complications, such as preterm birth and preeclampsia. We list the computational analysis platforms and resources available for the public use. Lastly, we discuss the future areas of interest for placenta single cell studies, as well as the data analytics needed to accomplish them.

Open access

Qi Li, Na Li, Hengwei Liu, Yu Du, Haitang He, Ling Zhang, and Yi Liu

Endometriosis (EMs) is an estrogen (E2)-dependent inflammatory disorder. Although EMs is considered a benign disease, it presents with malignant characteristics, such as migration and invasion. An increasing number of studies have shown that aberrantly expressed circular RNAs (circRNAs) play an essential role in disease development and progression. However, the mechanisms by which circRNAs exert their pathological effects in EMs remain unclear. Hsa_circ_0001649, a novel cancer-associated circRNA, has been previously reported to be downregulated in several cancer types and related to cell migration and invasion. In the present study, real-time PCR (qRT-PCR) was carried out to measure hsa_circ_0001649 levels in human tissues, human primary endometrial stromal cells (ESCs) and a human endometrial stromal cell line (ThESCs). Matrix metalloproteinase 9 (MMP9) levels in ESCs and ThESCs were assessed by qRT-PCR and Western blotting, and the migration and invasion capacities of ThESCs were evaluated by transwell assay. As a result, hsa_circ_0001649 expression was significantly decreased in ectopic and eutopic endometrial samples compared with that in normal endometrial samples. E2 decreased hsa_circ_0001649 expression but increased MMP9 expression in ESCs and ThESCs. Furthermore, ThESCs were more invasive under E2 stimulation. However, these effects disappeared when ICI or hsa_circ_0001649 transfection was used. Collectively, our findings reveal that decreased hsa_circ_0001649 expression plays a role in E2-increased MMP9 expression through E2 receptors (ERs), which have critical functions in EMs.

Open access

Gonçalo Pereira, Ricardo Bexiga, João Chagas e Silva, Elisabete Silva, Christelle Ramé, Joëlle Dupont, Yongzhi Guo, Patrice Humblot, and Luís Lopes-da-Costa

Adipokines emerged as regulators of metabolism and inflammation in several scenarios. This study evaluated the relationship between adipokines (adiponectin, chemerin and visfatin) and cytological (subclinical) endometritis, by comparing healthy (without), transient (recovered by 45 days postpartum (DPP)) and persistent (until 45 DPP) endometritis cows (n = 49). Cows with persistent endometritis had higher adiponectin concentrations in plasma (at 21 DPP, P < 0.05 and at 45 DPP, P < 0.01) and in uterine fluid (at 45 DPP, P < 0.001), and higher chemerin concentrations in plasma (P < 0.05) and uterine fluid (P < 0.01) at 45 DPP than healthy cows. Cows with persistent endometritis had higher gene transcription in the cellular pellet of uterine fluid and protein expression in the endometrium of these adipokines and their receptors than healthy cows. Adiponectin plasma concentrations allowed to discriminate healthy from persistent endometritis cows, in 87% (21 DPP) and 98% (45 DPP) of cases, and adiponectin and chemerin uterine fluid concentrations at 45 DPP allowed for this discrimination in 100% of cases. Cows with concentrations above the cutoff were a minimum of 3.5 (plasma 21 DPP), 20.4 (plasma 45 DPP), and 33.3 (uterine fluid 45 DPP) times more at risk of evidencing persistent endometritis at 45 DPP than cows with concentrations below the cutoff. Overall, results indicate a relationship between adipokine signalling and the inflammatory status of the postpartum uterus of dairy cows, evidencing that adipokines represent suitable biomarkers of subclinical endometritis, able to predict the risk of persistence of inflammation.

Open access

Roseanne Rosario, Hazel L Stewart, Emily Walshe, and Richard A Anderson

In female mammals, reproductive potential is determined during fetal life by the formation of a non-renewable pool of primordial follicles. Initiation of meiosis is one of the defining features of germ cell differentiation and is well established to commence in response to retinoic acid. WIN 18,446 inhibits the conversion of retinol to retinoic acid, and therefore it was used to explore the impact of reduced retinoic acid synthesis on meiotic progression and thus germ cell development and subsequent primordial follicle formation. e13.5 mouse fetal ovaries were cultured in vitro and treated with WIN 18,446 for the first 3 days of a total of up to 12 days. Doses as low as 0.01 µM reduced transcript levels of the retinoic acid response genes Stra8 and Rarβ without affecting germ cell number. Higher doses resulted in germ cell loss, rescued with the addition of retinoic acid. WIN 18,446 significantly accelerated the progression of prophase I; this was seen as early as 48 h post treatment using meiotic chromosome spreads and was still evident after 12 days of culture using Tra98/Msy2 immunostaining. Furthermore, ovaries treated with WIN 18,446 at e13.5 but not at P0 had a higher proportion of growing follicles compared to vehicle controls, thus showing evidence of increased follicle activation. These data therefore indicate that retinoic acid is not necessary for meiotic progression but may have a role in the regulation of its progression and germ cell survival at that time and provide evidence for a link between meiotic arrest and follicle growth initiation.

Open access

Marta Almada, Lia Costa, Bruno Fonseca, Patrícia Alves, Jorge Braga, Daniela Gonçalves, Natércia Teixeira, and Georgina Correia-da-Silva

Proliferation, differentiation and apoptosis of trophoblast cells are required for normal placental development. Impairment of those processes may lead to pregnancy-related diseases. Disruption of endoplasmic reticulum (ER) homeostasis has been associated with several reproductive pathologies including recurrent pregnancy loss and preeclampsia. In the unfolded protein response (UPR), specific ER-stress signalling pathways are activated to restore ER homeostasis, but if the adaptive response fails, apoptosis is triggered. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and Activating transcription factor 6 (ATF6) are central players in UPR and in ER-stress-induced apoptosis, as well as downstream transcription factors, as C/EBP homologous protein (CHOP). Our previous studies have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) modulates trophoblast cell turnover. Nevertheless, the role of ER-stress on 2-AG induced apoptosis and cannabinoid signalling in trophoblast has never been addressed. In this work, we used BeWo cells and human primary cytotrophoblasts isolated from term-placenta. The expression of ER-stress markers was analysed by qRT-PCR and Western blotting. ROS generation was assessed by fluorometric methods, while apoptosis was detected by the evaluation of caspase -3/-7 activities and Poly (ADP-ribose) polymerase (PARP) cleavage. Our findings indicate that 2-AG is able to induce ER-stress and apoptosis. Moreover, the eukaryotic initiation factor 2 (eIF2α)/CHOP pathway involved in ER-stress-induced apoptosis is triggered through a mechanism dependent on cannabinoid receptor CB2 activation. The results bring novel insights on the importance of ER-stress and cannabinoid signalling on 2-AG mechanisms of action in placenta.