Browse

You are looking at 81 - 90 of 12,531 items for

  • Refine by Access: Content accessible to me x
Clear All
Restricted access

Mathias Seidensticker, Sabine Tasch, Andrea Mietens, Betty Exintaris, and Ralf Middendorff

In brief

One of the most commonly prescribed benign prostatic hyperplasia (BPH) pharmacotherapies, the alpha1-adrenergic blocker tamsulosin, is frequently discontinued, especially by younger patients due to ejaculatory disorders, often without feedback to the attending physician. Using a newly developed ex vivo system simulating sympathetic effects on the most relevant structures for the emission phase of ejaculation, that is seminal vesicles, prostate and the most distal part of the cauda epididymidis, we elucidated that tamsulosin fundamentally disturbed the obligatory noradrenaline-induced contractions in each of these structures which differed to an alternative pharmacotherapy, the PDE5 inhibitor tadalafil.

Abstract

Structures responsible for the emission phase of ejaculation are the seminal vesicles, the most distal part of the cauda epididymidis and the newly characterized prostate excretory ducts. The emission phase is mainly regulated by the sympathetic nervous system through alpha1-adrenergic receptor activation by noradrenaline at the targeted organs. BPH treatment with alpha1A-adrenergic antagonists such as tamsulosin is known to result in ejaculation dysfunction, often leading to discontinuation of therapy. Mechanisms of this disturbance remain unclear. We established a rodent model system to predict drug responses in tissues involved in the emission phase of ejaculation. Imitating the therapeutic situation, prostate ducts, seminal vesicles and the distal cauda epididymal duct were pre-incubated with the smooth muscle cell-relaxing BPH drugs tadalafil, a novel BPH treatment option, and tamsulosin in an ex vivo time-lapse imaging approach. Afterwards, noradrenergic responses in the relevant structures were investigated to simulate sympathetic activation. Noradrenaline-induced strong contractions ultimately lead to secretion in structures without pre-treatment. Contractions were abolished by tamsulosin in prostate ducts and seminal vesicles and significantly decreased in the epididymal duct. Such effects were not observed with tadalafil pre-treatment. Data visualized a serious dysfunction of each organ involved in emission by affecting alpha1-adrenoceptors localized at the relevant structures but not by targeting smooth muscle cell-localized PDE5 by tadalafil. Our model system reveals the mechanism of tamsulosin resulting in adverse effects during ejaculation in patients treated for BPH. These adverse effects on contractility do not apply to tadalafil treatment. This new knowledge translates directly to clinical medicine.

Restricted access

Shuta Nagata, Yuki Inoue, Takuya Sato, Keisuke Tanaka, Akihisa Shinozawa, Komei Shirasuna, and Hisatala Iwata

In brief

This study shows that ageing affects miRNA profiles in follicular fluid, and an miRNA that is highly abundant in the follicular fluid of young cows supports the growth of oocytes derived from early antral follicles.

Abstract

We examined age-associated changes in miRNA profiles in the follicular fluid (FF) of cows. The role of miR-19b, which is abundant in the FF of young cows, in in vitro growth of early antral follicles (EAFs)-derived oocytes was assessed. FF was collected from the antral follicles of young (20–40 months) and aged (>120 months) cows. The miRNA profiles were similar between the FF of both age groups, whereas the abundance of some miRNAs differed between these samples. The miRNA profiles in granulosa cells (GCs) and the spent culture medium of oocyte–GC complexes (OGCs) derived from EAFs were distinct. Some miRNA groups overlapped among the GCs, culture media, and FFs. miR-19b was highly abundant in the FF of young cows, GCs, and culture medium. The supplementation of OGC culture medium with miR-19b increased the diameter, acetylation levels, and fertilisation ability of the oocytes. To assess whether miR-19b was functional in the GCs, a dual-luciferase assay, suppression of target protein, and RNA-sequencing of the GCs followed by functional annotation of the differentially expressed genes (DEGs) were conducted. Functional annotation of the DEGs suggested that miR-19b influences genes associated with FoxO signalling, endocytosis, and NR3C1 in GCs. These results suggest that in FFs, ageing affects the abundance of miRNAs that have important roles in oocyte development.

Restricted access

M Navarro, M M Halstead, Gonzalo Rincon, A A Mutto, and P J Ross

In brief

Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos.

Abstract

Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.

Free access

Kalle T Rytkönen, Nigatu Adossa, Mehrad Mahmoudian, Tapio Lönnberg, Matti Poutanen, and Laura L Elo

In brief

Preeclampsia is a common serious disorder that can occur during pregnancy. This study uses integrative analysis of preeclampsia transcriptomes and single-cell transcriptomes to predict cell type-specific contributions to preeclampsia.

Abstract

Preeclampsia is a devastating pregnancy disorder and a major cause of maternal and perinatal mortality. By combining previous transcriptomic results on preeclampsia with single-cell sequencing data, we here predict distinct and partly unanticipated contributions of decidual stromal cells and uterine natural killer cells in early- and late-onset preeclampsia.

Free access

Sun-Wei Guo

In brief

Traditionally viewed as enigmatic and elusive, adenomyosis is a fairly common gynecological disease but is under-recognized and under-researched. This review summarizes the latest development on the pathogenesis and pathophysiology of adenomyosis, which have important implications for imaging diagnosis of the disease and for the development of non-hormonal therapeutics.

Abstract

Traditionally considered as an enigmatic disease, adenomyosis is a uterine disease that affects many women of reproductive age and is a contributing factor for pelvic pain, heavy menstrual bleeding (HMB), and subfertility. In this review, the new development in the pathogenesis and pathophysiology of adenomyosis has been summarized, along with their clinical implications. After reviewing the progress in our understanding of the pathogenesis and describing the prevailing theories, in conjunction with their deficiencies, a new hypothesis, called endometrial–myometrial interface disruption (EMID), which is backed by extensive epidemiologic data and demonstrated by a mouse model, is reviewed, along with recent data implicating the role of Schwann cells in the EMI area in the genesis of adenomyosis. Additionally, the natural history of adenomyotic lesions is elaborated and underscores that, in essence, adenomyotic lesions are fundamentally wounds undergoing repeated tissue injury and repair (ReTIAR), which progress to fibrosis through epithelial–mesenchymal transition, fibroblast-to-myofibroblast transdifferentiation, and smooth muscle metaplasia. Increasing lesional fibrosis propagates into the neighboring EMI and endometrium. The increased endometrial fibrosis, with ensuing greater tissue stiffness, results in attenuated prostaglandin E2, hypoxia signaling and glycolysis, impairing endometrial repair and causing HMB. Compared with adenomyosis-associated HMB, the mechanisms underlying adenomyosis-associated pain are less understood but presumably involve increased uterine contractility, hyperinnervation, increased lesional production of pain mediators, and central sensitization. Viewed through the prism of ReTIAR, a new imaging technique can be used to diagnose adenomyosis more accurately and informatively and possibly help to choose the best treatment modality.

Restricted access

Pei-Li Wu, Jing-Wen Zhu, Cheng Zeng, Xin Li, Qing Xue, and Hui-Xia Yang

In brief

Insufficient trophoblast invasion at the maternal–fetal interface contributes to abortion-prone pregnancy. Our study shows that decreased levels of IGFBP7 in unexplained recurrent spontaneous abortion (URSA) trophoblast cells inhibit MMP2 and Slug expression as well as trophoblast invasion, suggesting that IGFBP7 should be considered a potential therapeutic protein target in URSA.

Abstract

Insufficient trophoblast invasion at the maternal–fetal interface contributes to abortion-prone pregnancy. Cyclosporine A (CsA) can exert therapeutic effects on URSA by promoting trophoblast invasion. A previous study showed decreased expression of insulin-like growth factor-binding protein 7 (IGFBP7) in the sera of recurrent spontaneous abortion patients. However, the role of IGFBP7 in URSA remains unknown. The aim of this study was to determine whether IGFBP7 modulates trophoblast invasion in URSA and the underlying molecular mechanisms. We found that IGFBP7 was expressed at lower levels in villous specimens from URSA patients. Manipulating IGFBP7 expression significantly affected the MMP2 and Slug expression in HTR-8/SVneo cells as well as trophoblast invasion in vitro. Inactivation of IGF-1R by IGFBP7 was observed, and IGF-1R inhibition increased the IGFBP7-induced MMP2 and Slug expression in HTR-8/SVneo cells. Moreover, the level of c-Jun was significantly upregulated in the URSA group. Silencing IGFBP7 increased the binding of downstream c-Jun to the MMP2 and Slug promoter regions in HTR-8/SVneo cells, thus suppressing transcription. In addition, increased expression of IGFBP7 in HTR-8/SVneo cells was observed upon CsA treatment. Knockdown of IGFBP7 inhibited the CsA-enhanced MMP2 and Slug expression in HTR-8/SVneo cells. Our results suggest that in normal pregnancy, IGFBP7 induces MMP2 and Slug expression via the IGF-1R-mediated c-Jun signaling pathway, thereby promoting trophoblast invasion. IGFBP7 depletion in URSA inhibits MMP2 and Slug expression as well as trophoblast invasion. Moreover, IGFBP7 participates in CsA-induced trophoblast invasion, suggesting that IGFBP7 is a potential therapeutic target for URSA.

Restricted access

Luchun Zhang, Meng Yuan, Xingwei Huang, Qianzi Cao, Shaogang Huang, Ruizhen Sun, and Lei Lei

In brief

Several factors affect the reprogramming efficiency of nuclear transfer embryos. This study shows that inhibiting 18S rRNA m6A methyltransferase METTL5 during nuclear transfer can improve the developmental rate of nuclear transfer embryos.

Abstract

N 6-methyladenosine (m6A) is one of the most important epigenetic modifications in eukaryotic RNAs, which regulates development and diseases. It is identified by several proteins. Methyltransferase-like 5 (METTL5), an enzyme that methylates 18S rRNA m6A, controls the translation of proteins and regulates pluripotency in embryonic stem cells. However, the functions of METTL5 in embryonic development have not been explored. Here, we found that Mettl5 was upregulated in somatic cell nuclear transfer (SCNT) embryos compared with normal fertilized embryos. Therefore, we hypothesized that METTL5 knockdown during the early stage of SCNT would improve the developmental rate of SCNT embryos. Notably, injection of Mettl5 siRNA (si-Mettl5) into enucleated oocytes during nuclear transfer increased the rate of development and the number of cells in blastocysts. Moreover, inhibition of METTL5 reduced the activity of phosphorylated ribosomal protein S6, decreased the levels of the repressive histone modification H3K27me3 and increased the expression of activating histone modifications H3K27ac and H3K4me3 and mRNA levels of some 2-cell-specific genes. These results expand our understanding of the role of METTL5 in early embryonic development and provide a novel idea for improving the efficiency of nuclear transfer cloning.

Restricted access

Fumie Magata, Lisa Toda, Marimo Sato, Takahiro Sakono, James K Chambers, Kazuyuki Uchida, Hiroko Tsukamura, and Fuko Matsuda

In brief

Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. The current findings that intrauterine lipopolysaccharide is absorbed in systemic circulation and attenuates ovarian cyclic activities could provide a basis for developing novel treatments to improve fertility.

Abstract

Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. Circulating lipopolysaccharide (LPS), a bacterial endotoxin causing uterine inflammation, reportedly downregulates the hypothalamic–pituitary–gonadal axis to mediate ovarian dysfunction. In contrast, the mechanism whereby intrauterine LPS affects ovarian function has not been fully clarified. This study aimed to elucidate whether uterine exposure to LPS downregulates hypothalamic kisspeptin gene (Kiss1) expression, gonadotropin release, and ovarian function. Uterine inflammation was induced by intrauterine LPS administration to ovary-intact and ovariectomized female rats. As a result, plasma LPS concentrations were substantially higher in control rats until 48 h post injection, and the estrous cyclicity was disrupted with a prolonged diestrous phase. Three days post injection, the number of Graafian follicles and plasma estradiol concentration were reduced in LPS-treated rats, while numbers of Kiss1-expressing cells in the anteroventral periventricular nucleus and arcuate nucleus (ARC) were comparable in ovary-intact rats. Four days post injection, ovulation rate and plasma progesterone levels reduced significantly while gene expression of interleukin1β and tumor necrosis factor α was upregulated in the ovaries of LPS-treated rats that failed to ovulate. Furthermore, the number of Kiss1-expressing cells in the ARC and pulsatile luteinizing hormone (LH) release were significantly reduced in ovariectomized rats 24 h post injection. In conclusion, these results indicate that intrauterine LPS is absorbed in systemic circulation and attenuates ovarian function. This detrimental effect might be caused, at least partly, by the inhibition of ARC Kiss1 expression and LH pulses along with an induction of ovarian inflammatory response.

Restricted access

L Chico-Sordo, A M Polonio, I Córdova-Oriz, M Medrano, S Herraiz, F Bronet, J A García-Velasco, and E Varela

In brief

COVID-19 does not affect the telomeres or fertility outcomes in mild cases. However, in women with severe symptoms, telomeres of granulosa cells are shorter, and the oocyte maturation rate is decreased.

Abstract

The coronavirus SARS-CoV-2 causes COVID-19 disease and affects primarily the lungs and also other organs, causing accelerated cell aging. One of the main pathways involved in aging is telomere attrition, which ultimately leads to defective tissue regeneration and organ dysfunction. Indeed, short telomeres in aged people aggravate the COVID-19 symptoms, and COVID-19 survivors showed shorter telomeres in blood cells. The SARS-CoV-2 has been detected in testis, but the ovaries, which express the viral entry factors, have not been fully explored. Our objective was to analyze telomeres and reproductive outcomes in women who had COVID-19 and controls. In this prospective cohort study, granulosa cells (GCs) and blood were collected from 65 women. Telomere length (TL) was measured by high-throughput in situ hybridization. Mean TL of GCs and peripheral blood mononuclear cells (PBMCs) was alike in control and mild cases. However, mean TL of GCs was lower in severe cases compared to controls (P = 0.017). Control and COVID groups had similar ovarian reserve and number of total oocytes after puncture. However, the oocyte maturation rate was lower in severe cases (P =  0.018). Interestingly, a positive correlation between the oocyte maturation rate and TL of GCs was found in the control group (P = 0.024). Our findings point to a potential impact of the coronavirus infection on telomeres and reproductive outcomes in severe cases. This might be considered upon possible new SARS-CoV threats, to favor treatments that enhance oocyte maturation in women severely affected by coronavirus undergoing ART.

Restricted access

Daniela F da Silva, Thaís A Rodrigues, Juliano C da Silveira, Angela M Gonella-Diaza, Mario Binelli, Juliana V Lopes, Marcelo T Moura, Weber B Feitosa, and Fabíola F Paula-Lopes

In brief

Elevated temperatures disturbed sperm physiology. Bovine sperm cells exposed to heat shock led to diminished mitochondrial activity, fertilizing ability, increased oxidative stress and caspase activity concomitant with a delay in embryonic developmental kinetics and modulation of sperm-borne microRNAsmiRNAs.

Abstract

Sperm function is susceptible to adverse environmental conditions. It has been demonstrated that in vivo and in vitro exposure of bovine sperm to elevated temperature reduces sperm motility and fertilizing potential. However, the cascade of functional, cellular, and molecular events triggered by elevated temperature in the mature sperm cell remains not fully understood. Therefore, the aim of this study was to determine the effect of heat shock on mature sperm cells. Frozen-thawed Holstein sperm were evaluated immediately after Percoll purification (0 h non-incubation control) or after incubation at 35, 38.5, and 41°C for 4 h. Heat shock reduced sperm motility after 3–4 h at 41°C while mitochondrial activity was reduced by 38.5 and 41°C when compared to the control. Heat shock also increased sperm reactive oxygen species production and caspase activity. Heat-shocked sperm had lower fertilizing ability, which led to diminished cleavage and blastocyst rates. Preimplantation embryo developmental kinetics was also slowed and reduced by sperm heat shock. The microRNA (miR) profiling identified >300 miRs in bovine sperm. Among these, three and seven miRs were exclusively identified in sperm cells exposed to 35 and 41°C, respectively. Moreover, miR-181d was enriched in sperm cells exposed to higher temperatures. Hence, elevated temperature altered the physiology of mature sperm cells by perturbing cellular processes and the miR profile, which collectively led to lower fertilizing ability and preimplantation development.