You are looking at 21 - 30 of 12,203 items for

  • All content x
Clear All
Restricted access

María Silvia Ventimiglia, Natalin Jimena Valeff, Marlon pozo Albán, Juan Manuel Paturlanne, Lorena Juriol, Florencia Quadrana, Martina Cecotti, Mariano Malamud, Marcos Javier Dibo, María De Los Ángeles Serradell, and Federico Jensen

Preterm birth (PTB), defined as birth occurring before 37 weeks of pregnancy, affects 5-18% of pregnancies and is the leading cause of neonatal morbidity and mortality worldwide. Although PTB is considered a syndrome, infection-induced inflammation accounts up to 50% of all cases. Despite the effort to reduce the incidence of PTB, it continues rising worldwide and current approaches for preventing or treating PTB are largely unsatisfactory.

Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. It is well known that probiotics can modulate the host immune system exerting a potent anti-inflammatory activity.

The main aim of this work was to evaluate the capacity of the probiotic Lactobacillus kefiri (Lk48) to prevent preterm birth in mice.

C57BL/6 female mice were treated with Lk48 or vehicle a week before and during pregnancy and were challenged with LPS (10 µg), a dose known to induce 100% of PTB, on gestational day 16. Percentages of PTB as well as stillbirth were evaluated.

We observed that oral administration of Lk48 significantly reduced the occurrence of LPS-induced PTB and stillbirth as well as improved post-natal development. This protective effect was associated with a reduction in leucocyte infiltration and reduced inflammation-induced damage in reproductive tissue. Besides, Lk48 treatment also modulated the diversity of vaginal microbiota.

Our results demonstrated that prophylactic consumption of probiotic Lactobacillus kefiri prevented LPS-induced PTB and still birth in mice and open new avenues for exploring novel and promising strategies for preventing PTB in humans.

Restricted access

Momal Sharif, Karl Kerns, Peter Sutovsky, Nicolai Bovin, and David J Miller

In mammals, the oviduct retains sperm, forming a reservoir from which they are released in synchrony with ovulation. However, the mechanisms underlying sperm release are unclear. Herein, we first examined in greater detail the release of sperm from the oviduct reservoir by sex steroids, and secondly, if the ubiquitin–proteasome system (UPS) mediates this release in vitro. Sperm were allowed to bind to oviductal cells or immobilized oviduct glycans, either bi-SiaLN or a suLeX, and channeled with steroids in the presence or absence of proteasome inhibitors. Previously, we have demonstrated progesterone-induced sperm release from oviduct cells and immobilized glycans in a steroid-specific manner. Herein, we found that the release of sperm from an immobilized oviduct glycan, a six-sialylated branched structure, and from immobilized fibronectin was inhibited by the CatSper blocker NNC 055-0396, akin to the previously reported ability of NNC 055-0396 to inhibit sperm release from another oviduct glycan, sulfated Lewis-X trisaccharide. Thus, CatSper may be required for release of sperm from a variety of adhesion systems. One possible mechanism for sperm release is that glycan receptors on sperm are degraded by proteasomes or shed from the sperm surface by proteasomal degradation. Accordingly, the inhibition of proteasomal degradation blocked sperm release from oviduct cell aggregates both immobilized oviduct glycans as well as fibronectin. In summary, progesterone-induced sperm release requires both active CatSper channels and proteasomal degradation, suggesting that hyperactivation and proteolysis are vital parts of the mechanism by which sperm move from the oviduct reservoir to the site of fertilization.

Restricted access

Yanhui Zhai, Meng Zhang, Xinglan An, Sheng Zhang, Xiangjie Kong, Qi Li, Hao Yu, Xiangpeng Dai, and Ziyi Li

Pre-implantation embryos undergo genome-wide DNA demethylation, however certain regions, like imprinted loci remain methylated. Further, the mechanisms ensuring demethylation resistance by TRIM28 in epigenetic reprogramming remain poorly understood. Here, TRIM28 was knocked down in oocytes, and its effects on porcine somatic cell nuclear transfer (SCNT) embryo development was examined. Our results showed that SCNT embryos constructed from TRIM28 knockdown oocytes had significantly lower cleavage (53.9 ± 3.4% vs 64.8 ± 2.7%) and blastocyst rates (12.1 ± 4.3% vs 19.8 ± 1.9%) than control-SCNT embryos. The DNA methylation levels at the promoter regions of the imprinting gene IGF2 and H19 were significantly decreased in the 4-cell stage, and the transcript abundance of other imprinting gene was substantially increased. We also identified an aberrant two-fold decrease in the expression of CXXC1and H3K4me3 methyltransferase (ASH2L and MLL2), and the signal intensity of H3K4me3 had a transient drop in SCNT 2-cell embryos. Our results indicated that maternal TRIM28 knockdown disrupted the genome imprints and caused epigenetic variability in H3K4me3 levels, which blocked the transcription activity of zygote genes and affected the normal developmental progression of porcine SCNT embryos.

Restricted access

Fuhua Xu, Shally Wolf, O'ryai Green, and Jing Xu

Vitamin D (VD) is a secosteroid hormone synthesized predominantly in the skin upon ultraviolet light exposure, which can also be obtained from dietary sources. In target cells, the bioactive VD binds to specific VD receptor to regulate downstream transcription of genes that are involved in a wide range of cellular processes. There is increasing recognition that the proper physiological levels of VD are critical for optimizing reproductive potential in women. The direct VD action in the ovary was first suggested in the 1980s. Since then, research has attempted to determine the role of VD in follicular development and oocyte maturation in animal models and clinical settings. However, data published to date are inconclusive due to the complexity in VD metabolism and the fact that VD actions are pervasive in regulating physiological functions in various systems, including the reproductive, endocrine and nervous systems that control reproduction. This review summaries in vitro, in vivo, and clinical evidence regarding VD metabolism and signaling in the ovary, as well as VD-regulated or VD-associated ovarian follicular development, steroidogenic function, and oocyte maturation. It is suggested that adequate animal models are needed for well-controlled studies to unravel molecular mechanisms of VD action in the ovary. For clinical studies, follicular development and function may be evaluated more effectively in a relatively homogeneous patient population under a well-controlled experimental design. A comprehensive understanding of VD-regulated folliculogenesis and oogenesis will provide critical insight into the impact of VD in female reproductive health.

Restricted access

Jia-Wei Shi, Hui-Li Yang, Zhen-Zhen Lai, Hui-Hui Shen, Xue-Yun Qin, Xue-Min Qiu, Yan Wang, Jiang-Nan Wu, and Ming-Qing Li

The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of decidual stromal cells (DSCs), a series of cytokines and immune cells. Insulin-like growth factor 1 (IGF1) is a low molecular weight peptide hormone with similar metabolic activity and structural characteristics of proinsulin, which exerts its biological effects by binding with its receptor. Emerging evidence has shown that IGF1 is expressed at the maternal–fetal interface, but its special role in establishment and maintenance of pregnancy is largely unknown. Here, we found that the expression of IGF1 in the decidua was significantly higher than that in the endometrium. Additionally, decidua from women with normal pregnancy had high levels of IGF1 compared with that from women with unexplained recurrent spontaneous miscarriage. Estrogen and progesterone led to the increase of IGF1 in DSCs through upregulating the expression of WISP2. Recombinant IGF1 or DSCs-derived IGF1 increased the survival, reduced the apoptosis of DSCs, and downregulated the cytotoxicity of decidual NK cells (dNK) through interaction with IGF1R. These data suggest that estrogen and progesterone stimulate the growth of DSCs and impair the cytotoxicity of dNK possibly by the WISP2/IGF1 signaling pathway.

Restricted access

Yining Li, Yeu-Farn Lin, Xiang Zhou, Hugh J Clarke, and Daniel J Bernard

Ovarian follicle development is regulated by locally produced TGFβ superfamily members. The TGFβ type III receptor (TGFBR3, or betaglycan), which regulates the actions of diverse TGFβ ligands, including inhibins, is expressed in different ovarian cell types. However, its functional roles in the ovary have not been investigated in vivo. Here, we ablated Tgfbr3 in murine oocytes using the Cre-loxP system. Oocyte-specific Tgfbr3 knockout (cKO) females were fertile, producing litters of similar size and frequency as controls. Their ovarian weights and histology were also normal. Though we confirmed efficient recombination of the floxed alleles, we did not detect Tgfbr3 mRNA in purified oocytes from superovulated cKO or control mice. These results challenge earlier observations of betaglycan protein expression in this cell type. Regardless, Tgfbr3 in the murine oocyte is clearly dispensable for female fertility.

Restricted access

Matteo Duque Rodriguez, Andrés Gambini, Laura D Ratner, Adrián J. Sestelo, Olinda Briski, Cynthia Gutnisky, Susana B Rulli, Rafael Fernandez-Martín, Pablo Cetica, and Daniel F Salamone

Heterospecific embryo transfer of an endangered species has been carried out using recipients from related domestic females. Aggregation of an embryo from an endangered species with a tetraploid embryo from the specie to be transferred could improve the development of pregnancy to term. The main objective of the present study was to analyze embryo aggregation in domestic cat model using hybrid embryos. To do this purpose we compared in vitro development of synchronic (S) or asynchronic (AS) and asynchronic tetraploid (AST) aggregation of domestic cat IVF embryos. Furthermore, aggregated blastocyst quality was analyzed by evaluation of the total cell number, cell allocation by mitotrackers staining of embryonic cells, expression of Oct4, Nanog, Sox2, Cdx2 genes, number of OCT4+ nuclei, and presence of DNA-fragmentation. Additionally, the developmental rates of AST aggregation of domestic cat with Leopardus geoffroyi hybrid (hLg) embryos were evaluated. AS aggregation increased blastocyst cell number and the number of OCT4+ nuclei as compared to non-aggregated diploid (2n) and tetraploid (4n) embryos. Moreover, blastocysts produced by AST aggregation showed reduced rates of fragmented DNA. No differences were found in the expression of the pluripotent genes, with exception of the Cdx2 expression, which was higher in 4n and aggregated embryos as compared to the control group. Interestingly, hybrids embryos derived by AST aggregation with domestic cat embryos had similar rates of blastocysts development as the control. Altogether, the findings support the use of 2cell fused embryos to generate tetraploid blastomeres and demonstrate that AST aggregation generates good quality embryos.

Restricted access

Honglan Song, Tai-hang Liu, Yongheng Wang, Fangfang Li, Lingling Ruan, Enoch Appiah Adu-Gyamfi, Sichen Hu, Xuemei Chen, Yubin Ding, and Li-juan Fu

The syncytiotrophoblast, derived from cytotrophoblast fusion, is responsible for maternal-fetal exchanges, secretion of pregnancy-related hormones, and fetal defense against pathogens. Inadequate cytotrophoblast fusion can lead to pregnancy disorders, such as preeclampsia and fetal growth restriction. However, little is known about the mechanism of cytotrophoblast fusion in both physiological and pathological pregnancy conditions. In this study, P57kip2 (P57), a cell cycle-dependent kinase inhibitor that negatively regulates the cell cycle, was found to be up-regulated during the process of syncytialization in both primary trophoblast cells and BeWo cells. Co-immunofluorescence with proliferation markers Ki-67 and Cyclin-CDK factors further showed that P57 specifically localizes in the post-mitotic cytotrophoblast subtype of the early pregnancy villi. Overexpression of P57 promoted trophoblast syncytialization by arresting the cell cycle at the G1/G0 phase and inhibiting proliferation. Blocking of the cell cycle through a serum starvation culture resulted in an enhancement of cytotrophoblast fusion and the up-regulation of P57 expression. In both spontaneous cytotrophoblast fusion and forskolin-induced BeWo cell fusion models, an initial up-regulation of P57 was observed followed by a subsequent downregulation. These findings indicate that proper expression of P57 at cytotrophoblast differentiation nodes plays an important role in trophoblast syncytialization.

Restricted access

Xiaolei Yao, M A EI-Samahy, Shenhua Xiao, Zhibo Wang, Fanxing Meng, Xiaodan Li, Yongjin Bao, Yanli Zhang, Ziyu Wang, Yixuan Fan, and Feng Wang

Being a novel target of luteinizing hormone (LH), the effect of CREB-binding protein/P300-interacting trans-activator with ED-rich tail member 4 (CITED4) gene on the proliferation, apoptosis, and steroidogenesis of ovarian granulosa cells (GCs) in Hu sheep was investigated. The presence of CITED4, CREB-binding protein (CBP), CCAAT/enhancer-binding protein alpha (C/EBPα) and -beta (C/EBPβ) proteins was demonstrated in GCs and luteal cells. CITED4 protein in GCs was induced by LH, and CITED4 overexpression moderately increased GC responses to LH. In contrast, CITED4 knockdown in GCs decreased prostaglandin (PGE2)-induced LH target gene levels. Moreover, PGE2-stimulated CITED4 mRNA expression was blocked by ERK1/2 inhibition (U0126), suggesting that CITED4 is a downstream target of the ERK1/2 pathway in sheep GCs. In contrast to CITED4 knockdown, CITED4 overexpression promoted GC proliferation, inhibited apoptosis, upregulated cell cycle-related genes, and downregulated apoptosis-related genes. Additionally, CITED4 overexpression induced cell cycle transition from S to G2/M phase. No effect was observed with CITED4 knockdown. CITED4 overexpression increased progesterone (P4) production levels and STAR mRNA expression, whereas CITED4 knockdown decreased P4 production and STAR and 3β-HSD mRNA expression levels. Thus, our results suggest that CITED4 is involved in regulating the expression of LH-induced genes and the ERK1/2 pathway and the proliferation, apoptosis, and steroidogenesis in Hu sheep GCs by modulating the expression of related genes. These findings will help understand the role of CITED4 in follicular development and ovulation of pre-ovulatory follicles.

Open access

Yu Chen Zhang, Xiaoli Qin, Xiao Ling Ma, Hui-qin Mo, Shi Qin, Cheng-xi Zhang, Xiao-wei Wei, Xue-qing Liu, Yan Zhang, Fuju Tian, and Yi Lin

Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.