You are looking at 31 - 40 of 12,215 items for

  • All content x
Clear All
Restricted access

Cesare Galli and Giovanna Lazzari

SCNT (Somatic Cell Nuclear Transfer) has complemented the toolbox of ARTs offering yet another technique to reproduce animals in an unprecedented way. Despite remarkable achievements, SCNT suffers of low efficiency, high pregnancy losses and higher than normal stillbirth rates that makes it an expensive technique to reproduce animals. Moreover, due to welfare issues associated with gestation and the newborn offspring, it is banned in some countries. It has become evident that these problems are of epigenetic nature associated with incomplete genome reprogramming, observed more frequently in ruminants and less often and of minor degree in pigs and horses. Genome editing is enormously benefiting from SCNT to turn genome edited cells into animals, even if zygote microinjection of CRISPR/Cas9 will become an alternative route in some occasions. SCNT will also be a route to reprogram somatic cell to pluripotency since bona fide iPSC in livestock are missing while embryonic stem cells have been now established. This opens the way to other technologies like the development of artificial gametes or interspecies nuclear transfer. To strengthen its commercial applications, SCNT will face three major challenges, i.e. intellectual property (extremely unclear in genome editing), regulatory approval by the relevant authorities of the potential products resulting and finally acceptance by the public who will eventually decide with its behavior the life or the death of the technology.

Restricted access

Veronika Tandl, Denise Hoch, Julia Bandres-Meriz, Sanela Nikodijevic, Gernot Desoye, and Alejandro Majali-Martinez

Endoplasmic reticulum (ER)-stress activates the unfolded protein response (UPR), which plays a (patho)physiological role in the placenta. Oxygen and hyperinsulinemia are major regulators of placental development. Thus, we hypothesized that oxygen, insulin and their interplay modulate ER-stress in early pregnancy. Using the human first trimester trophoblast cell line ACH-3P, we quantified mRNA and protein of several members of UPR by RT-qPCR and Western blotting, respectively. ER-stress induction using tunicamycin and brefeldin A resulted in increased CHOP (4.6-fold change; P ≤ 0.001), XBP1 expression (1.7- and 1.3-fold change, respectively; P ≤ 0.001 and P < 0.05) and XBP1 splicing (7.9- and 12.8-fold change, respectively; P ≤ 0.001). We subsequently analyzed the effect of oxygen (6.5%, 2.5%), insulin (0.1-10 nM) and their interaction using ANCOVA adjusted for cell passage as co-variate. Although GRP78 protein remained unaffected, low oxygen (2.5% O2) increased IRE1α phosphorylation (+52%; P < 0.05) and XBP1 splicing (1.8-fold change; P ≤ 0.001) after 24h, while eIF2α protein and CHOP expression were downregulated (–28%; P < 0.05 and –24%; P ≤ 0.001; respectively). eIF2α phosphorylation was also reduced after 48h by low oxygen (–61%; P < 0.05), but increased in the presence of insulin (+46%; P ≤ 0.01). These changes were not PERK-mediated, since PERK phosphorylation and total protein were not altered. Overall, our results suggest that IRE1α and eIF2α UPR-pathways are differentially regulated by oxygen and insulin in early pregnancy.

Restricted access

Heather B Patisaul

We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes, injury to brain sexual differentiation and thus the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology has elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. Included in this review are discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well understood EDC modes of action. Also provided are extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects.

Restricted access

Giovana D Catandi, Yusra M Obeidat, Corey D Broeckling, Thomas W Chen, Adam J Chicco, and Elaine M Carnevale

Advanced maternal age is associated with a decline in fertility and oocyte quality. We used novel metabolic microsensors to assess effects of mare age on single oocyte and embryo metabolic function, which has not yet been similarly investigated in mammalian species. We hypothesized that equine maternal aging affects the metabolic function of oocytes and in vitro-produced early embryos, oocyte mitochondrial DNA (mtDNA) copy number, and relative abundance of metabolites involved in energy metabolism in oocytes and cumulus cells. Samples were collected from preovulatory follicles from young (≤14 years) and old (≥20 years) mares. Relative abundance of metabolites in metaphase II oocytes (MII) and their respective cumulus cells, detected by liquid and gas chromatography coupled to mass spectrometry, revealed that free fatty acids were less abundant in oocytes and more abundant in cumulus cells from old vs young mares. Quantification of aerobic and anaerobic metabolism, respectively measured as oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in a microchamber containing oxygen and pH microsensors, demonstrated reduced metabolic function and capacity in oocytes and day-2 embryos originating from oocytes of old when compared to young mares. In mature oocytes, mtDNA was quantified by real-time PCR and was not different between the age groups and not indicative of mitochondrial function. Significantly more sperm-injected oocytes from young than old mares resulted in blastocysts. Our results demonstrate a decline in oocyte and embryo metabolic activity that potentially contributes to the impaired developmental competence and fertility in aged females.

Restricted access

Arabela Guedes de Azevedo Viana, Iara Magalhães Ribeiro, Renner Philipe Rodrigues Carvalho, Erdogan Memili, Arlindo Alencar Moura, and Mariana Machado-Neves

Proteomic approaches have been widely used in reproductive studies to uncover protein biomarkers of bull fertility. Seminal plasma is one of the most relevant sources of these proteins that may influence sperm physiology. Nonetheless, there are still gaps in existing knowledge in the functional attributes of seminal proteins. Thus, we reviewed the relationships between seminal plasma proteins and bull fertility by conducting a systematic review with data obtained from 71 studies. This review showed that the associations related to fertility improvement with the use of total seminal plasma proteins are still controversial. None of the studies explored the sperm fertilizing ability following these interactions. By contrast, the exposure to a single protein, such as osteopontin, binder of sperm proteins, and heparin binding proteins, can increment sperm motility, capacitation, and fertilizing ability by modulating intracellular calcium concentrations, removing lipids from sperm membranes, and regulating the acrosome reaction. Variations in protein analyses and the protein contents and their abundances between animals contributed to the difficulty of establishing protein biomarkers of fertilizing potential of the bull sperm. Indeed, the heterogenicity of methodologies was a limitation of this review. Standardized methods of seminal protein analyses, as well as sperm endpoints, may minimize such discrepancies. In conclusion, potential biomarkers of sperm parameters are still to be established. Future studies should evaluate protein isoforms and how they interact with sperm to ascertain their biological functions.

Free access

Rodney D Geisert, Ashley E Meyer, Caroline A Pfeiffer, Destiny N Johns, Kiho Lee, Kevin D Wells, Thomas E Spencer, and Randall S Prather

Development of viviparity in mammals requires that the placenta evolves as an intermediate interface between the fetus and maternal uterus. In addition to the retention of the fetus and secretion of nutrients to support growth and development to term, it is essential that viviparous species modify or inhibit the maternal immune system from recognizing the semi-allogeneic fetus. Following blastocyst hatching from its zona pellucida, trophoblast differentiation provides the initial communication to the maternal endometrium to regulate maintenance of progesterone production from the corpus luteum and biological pathways in uterine and conceptus development necessary in the establishment and maintenance of pregnancy. Many conceptus factors have been proposed to serve in the establishment and maintenance of pregnancy. CRISPR-Cas9 gene-editing technology provides a specific and efficient method to generate animal models to perform loss-of-function studies to investigate the role of specific conceptus factors. The utilization of CRISPR-Cas9 gene editing has provided a direct approach to investigate the specific role of conceptus factors in the development and establishment of pregnancy in the pig. This technology has helped address a number of questions concerning peri-implantation development and has altered our understanding of maternal recognition and maintenance of pregnancy in the pig.

Free access

Eva Pohl, Jörg Gromoll, Joachim Wistuba, and Sandra Laurentino

Delayed family planning and increased parental age increase the risk for infertility and impaired offspring health. While the impact of ageing on oogenesis is well studied, this is less understood on spermatogenesis. Assessing ageing effects on the male germline presents a challenge in differentiating between the effects of ageing-associated morbidities, infertility and ‘pure’ ageing. However, understanding the impact of ageing on male germ cells requires the separation of age from other factors. In this review, we therefore discuss the current knowledge on healthy ageing and spermatogenesis. Male ageing has been previously associated with declining sperm parameters, disrupted hormone secretion and increased time-to-pregnancy, among others. However, recent data show that healthy ageing does not deteriorate testicular function in terms of hormone production and spermatogenic output. In addition, intrinsic, age-dependent, highly specific processes occur in ageing germ cells that are clearly distinct from somatic ageing. Changes in spermatogonial stem cell populations indicate compensation for stem cell exhaustion. Alterations in the stem cell niche and molecular ageing signatures in sperm can be observed in ageing fertile men. DNA fragmentation rates as well as changes in DNA methylation patterns and increased telomere length are hallmarks of ageing sperm. Taken together, we propose a putative link between the re-activation of quiescent Adark spermatogonia and molecular changes in aged sperm descending from these activated spermatogonia. We suggest a baseline of ‘pure' age effects in male germ cells which can be used for subsequent studies in which the impact of infertility or co-morbidities will be studied.

Restricted access

Mun-Hyeong Lee, Pil-Soo Jeong, Bo-Woong Sim, Hyo-Gu Kang, Min Ju Kim, Sanghoon Lee, Seung-Bin Yoon, Philyong Kang, Young-Ho Park, Ji-Su Kim, Bong-Seok Song, Deog-Bon Koo, and Sun-Uk Kim

In the mammalian female reproductive tract, physiological oxygen tension is lower than that of the atmosphere. Therefore, to mimic in vivo conditions during in vitro culture (IVC) of mammalian early embryos, 5% oxygen has been extensively used instead of 20%. However, the potential effect of hypoxia on the yield of early embryos with high developmental competence remains unknown or controversial, especially in pigs. In the present study, we examined the effects of low oxygen tension under different oxygen tension levels on early developmental competence of parthenogenetically activated (PA) and in vitro-fertilized (IVF) porcine embryos. Unlike the 5% and 20% oxygen groups, exposure of PA embryos to 1% oxygen tension, especially in early-phase IVC (0–2 days), greatly decreased several developmental competence parameters including blastocyst formation rate, blastocyst size, total cell number, inner cell mass (ICM) to trophectoderm (TE) ratio, and cellular survival rate. In contrast, 1% oxygen tension did not affect developmental parameters during the middle (2–4 days) and late phases (4–6 days) of IVC. Interestingly, induction of autophagy by rapamycin treatment markedly restored the developmental parameters of PA and IVF embryos cultured with 1% oxygen tension during early-phase IVC, to meet the levels of the other groups. Together, these results suggest that the early development of porcine embryos depends on crosstalk between oxygen tension and autophagy. Future studies of this relationship should explore the developmental events governing early embryonic development to produce embryos with high developmental competence in vitro.

Restricted access

Romina Higa, Fredrick J Rosario, Theresa L Powell, Thomas Jansson, and Alicia Jawerbaum

Mechanistic target of rapamycin (MTOR) is essential for embryo development by acting as a nutrient sensor to regulate cell growth, proliferation and metabolism. Folate is required for normal embryonic development and it was recently reported that MTOR functions as a folate sensor. In this work, we tested the hypothesis that MTOR functions as a folate sensor in the embryo and its inhibition result in embryonic developmental delay affecting neural tube closure and that these effects can be rescued by folate supplementation. Administration of rapamycin (0.5 mg/kg) to rats during early organogenesis inhibited embryonic ribosomal protein S6, a downstream target of MTOR Complex1, markedly reduced embryonic folate incorporation (−84%, P < 0.01) and induced embryo developmental impairments, as shown by an increased resorption rate, reduced embryo somite number and delayed neural tube closure. These alterations were prevented by folic acid administered to the dams. Differently, although an increased rate of embryonic rotation defects was observed in the rapamycin-treated dams, this alteration was not prevented by maternal folic acid supplementation. In conclusion, MTOR inhibition during organogenesis in the rat resulted in decreased folate levels in the embryo, increased embryo resorption rate and impaired embryo development. These data suggest that MTOR signaling influences embryo folate availability, possibly by regulating the transfer of folate across the maternal–embryonic interface.

Restricted access

Amir Salek Farrokhi, Amir-Hassan Zarnani, Fatemeh Rezaei kahmini, and Seyed Mohammad Moazzeni

Recurrent pregnancy loss (RPL) is one of the most common complications of early pregnancy associated in most cases with local or systemic immune abnormalities such as the diminished proportion of regulatory T cells (Tregs). Mesenchymal stem cells (MSCs) have been shown to modulate the immune responses by de novo induction and expansion of Tregs. In this study, we analyzed the molecular and cellular mechanisms involved in Treg-associated pregnancy protection following MSCs administration in an abortion-prone mouse mating. In a case-control study, syngeneic abdominal fat-derived MSCs were administered intraperitoneally (i.p) to the DBA/2-mated CBA/J female mice on day 4.5 of pregnancy. Abortion rate, Tregs proportion in spleen and inguinal lymph nodes, Ho1, Foxp3, Pd1 and Ctla4 genes expression at the feto–maternal interface were then measured on day 13.5 of pregnancy using flow cytometry and quantitative RT-PCR, respectively. The abortion rate in MSCs-treated mice reduced significantly and normalized to the level observed in normal pregnant animals. We demonstrated a significant induction of Tregs in inguinal lymph nodes but not in the spleen following MSCs administration. Administration of MSCs remarkably upregulated the expression of Ho1, Foxp3, Pd1 and Ctla4 genes in both placenta and decidua. Here, we show that MSCs therapy could protect the fetus in the abortion-prone mice through Tregs expansion and upregulation of Treg-related genes. These events could establish an immune-privileged microenvironment, which participates in the regulation of detrimental maternal immune responses against the semi-allogeneic fetus.