You are looking at 31 - 40 of 12,231 items for

  • All content x
Clear All
Restricted access

María Silvia Ventimiglia, Natalin Jimena Valeff, Marlon Pozo Albán, Juan Manuel Paturlanne, Lorena Juriol, Florencia Quadrana, Martina Cecotti, Mariano Malamud, Marcos Javier Dibo, María de los Ángeles Serradell, and Federico Jensen

Preterm birth (PTB), defined as birth occurring before 37 weeks of pregnancy, affects 5–18% of pregnancies and is the leading cause of neonatal morbidity and mortality worldwide. Although PTB is considered a syndrome, infection-induced inflammation accounts for up to 50% of all cases. Despite the effort to reduce the incidence of PTB, it continues to rise worldwide and current approaches for preventing or treating PTB are largely unsatisfactory. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. It is well known that probiotics can modulate the host immune system exerting a potent anti-inflammatory activity. The main aim of this work was to evaluate the capacity of the probiotic Lactobacillus kefiri (Lk48) to prevent preterm birth in mice. C57BL/6 female mice were treated with Lk48 or vehicle a week before and during pregnancy and were challenged with LPS (10 µg), a dose known to induce PTB on gestational day 16. Percentages of PTB as well as stillbirth were evaluated. We observed that oral administration of Lk48 significantly reduced the occurrence of LPS-induced PTB and stillbirth as well as improved post-natal development. This protective effect was associated with a reduction in leucocyte infiltration and reduced inflammation-induced damage in reproductive tissue. Besides, Lk48 treatment also modulated the diversity of vaginal microbiota. Our results demonstrated that prophylactic consumption of probiotic L. kefiri prevented LPS-induced PTB and still birth in mice and opens new avenues for exploring novel and promising strategies for preventing PTB in humans.

Open access

Martina Langhammer, Erika Wytrwat, Marten Michaelis, Jennifer Schön, Armin Tuchscherer, Norbert Reinsch, and Joachim M Weitzel

We recently described two outbred mouse lines that were selected for large litter size at first delivery. However, lifetime fecundity appears to be economically more important for the husbandry of many polytocous species for which mouse lines might serve as bona fide animal models (e.g. for pigs). In the present study, we compared the lifetime fecundities of two highly fertile mouse lines (FL1 and FL2: >20 offspring/litter at first delivery) with those of an unselected control line (ctrl) and two lines that were selected for high body weight (DU6) and high protein mass (DU6P) without selection pressure on fertility. We tested the hypothesis that selection for large litter size at first parturition would also increase lifetime fecundity in mice, and we observed very large differences between lines. Whereas FL1 and ctrl delivered up to nine and ten litters, none of the DU6 and DU6P females gave birth to more than five litters. In line with this observation, FL1 delivered the most pups per lifetime (85.7/female). FL2 females produced the largest average litter sizes (20.4 pups/litter) in the first four litters; however, they displayed a reduced number of litters. With the exception of ctrl, litter sizes declined from litter to litter. Repeated delivery of litters with high offspring numbers did not affect the general health of FL females. The presented data demonstrate that two biodiverse, highly fertile mouse lines selected for large litter size at first delivery show different lifetime reproductive fitness levels. Thus, these mouse lines might serve as valuable mouse models for investigating lifetime productivity and longevity in farm animals.

Free access

Fuhua Xu, Shally Wolf, O'ryai Green, and Jing Xu

Vitamin D (VD) is a secosteroid hormone synthesized predominantly in the skin upon UV light exposure, which can also be obtained from dietary sources. In target cells, the bioactive VD binds to specific VD receptor to regulate downstream transcription of genes that are involved in a wide range of cellular processes. There is an increasing recognition that the proper physiological levels of VD are critical for optimizing reproductive potential in women. The direct VD action in the ovary was first suggested in the 1980s. Since then, research has attempted to determine the role of VD in follicular development and oocyte maturation in animal models and clinical settings. However, data published to date are inconclusive due to the complexity in VD metabolism and the fact that VD actions are pervasive in regulating physiological functions in various systems, including the reproductive, endocrine and nervous systems that control reproduction. This review summaries in vitro, in vivo, and clinical evidence regarding VD metabolism and signaling in the ovary, as well as VD-regulated or VD-associated ovarian follicular development, steroidogenic function, and oocyte maturation. It is suggested that adequate animal models are needed for well-controlled studies to unravel molecular mechanisms of VD action in the ovary. For clinical studies, follicular development and function may be evaluated more effectively in a relatively homogeneous patient population under a well-controlled experimental design. A comprehensive understanding of VD-regulated folliculogenesis and oogenesis will provide critical insight into the impact of VD in female reproductive health.

Restricted access

Matteo Duque Rodriguez, Andrés Gambini, Laura D Ratner, Adrian J Sestelo, Olinda Briski, Cynthia Gutnisky, Susana B Rulli, Rafael Fernández Martin, Pablo Cetica, and Daniel F Salamone

Heterospecific embryo transfer of an endangered species has been carried out using recipients from related domestic females. Aggregation of an embryo from an endangered species with a tetraploid embryo from the species to be transferred could improve the development of pregnancy to term. The main objective of the present study was to analyze embryo aggregation in domestic cat model using hybrid embryos. For this purpose, we compared in vitro development of synchronic (Sync) or asynchronic (Async) and asynchronic with a tetraploid (Async4n) aggregation of domestic cat IVF embryos. Furthermore, aggregated blastocyst quality was analyzed by evaluation of the total cell number, cell allocation by mitotrackers staining of embryonic cells, expression of Oct4, Nanog, Sox2, Cdx2 genes, number of OCT4+ nuclei, and presence of DNA fragmentation. Additionally, the developmental rates of Async4n aggregation of domestic cat with Leopardus geoffroyi hybrid (hLg) embryos were evaluated. Async aggregation increased blastocyst cell number and the number of OCT4+ nuclei as compared to non-aggregated diploid (2n) and tetraploid (4n) embryos. Moreover, blastocysts produced by Async4n aggregation showed reduced rates of fragmented DNA. No differences were found in the expression of the pluripotent genes, with exception of the Cdx2 expression, which was higher in 4n and aggregated embryos as compared to the control group. Interestingly, hybrids embryos derived by Async4n aggregation with domestic cat embryos had similar rates of blastocysts development as the control. Altogether, the findings support the use of two-cell-fused embryos to generate tetraploid blastomeres and demonstrate that Async4n aggregation generates good quality embryos.

Restricted access

Lanting Chen, Fengrun Sun, Mengdie Li, Jinfeng Qian, Meirong Du, Da-Jin Li, and Songcun Wang

The T-box transcription factor protein eomesodermin (Eomes) is known for both homeostasis and function of effector and memory CD8+T cells. However, much less is known about the functional regulation of Eomes on CD8+ T cells during pregnancy. In the present study, we concluded the higher Eomes expression dCD8+T cells during normal early pregnancy. The number of Eomes+dCD8+T cells decreased in miscarriage. This Eomes+dCD8+T cell subset also expressed less growth promoting factors, shifted toward pro-inflammatory phenotype in miscarriage. Primary Trophoblasts and HTR8/SVneo cell line could increase Eomes expression of dCD8+T cells from both normal early pregnancy and miscarriage, which might provide new strategy for therapy to promote maternal-fetal tolerance and prevent pregnancy loss. These findings indicated that Eomes might be promising early warming targets of miscarriage. In addition, this study suggested that the reproductive safety must be a criterion considered in modulating the dose and function of Eomes in CD8+T cells to reverse T cell exhaustion.

Restricted access

Yufei Wang, Haoya Chang, Qifu He, Yaxing Xue, Kang Zhang, Jian Kang, Ying Wang, Zhiming Xu, Yong Zhang, and Fusheng Quan

Oocyte vitrification has significantly improved the survival rate and become the mainstream method for cryopreserving oocytes. Previous studies have demonstrated that the ultrastructure, mitochondrial function, DNA methylation, and histone modification exhibit an irreversible effect after oocyte vitrification. However, little is known about the effects of oocyte vitrification on glucose transport and metabolism. This study aims to determine whether mouse oocyte vitrification causes abnormal glucose metabolism and identify a strategy to correct abnormal glucose metabolism. Furthermore, this study further investigates the effects of oocyte vitrification on glucose uptake, and glucose metabolism, and energy levels. The results indicated that vitrification significantly reduced the glucose transport activity, NADPH, glutathione, and ATP levels, and increased reactive oxygen species levels in oocytes (P  < 0.01). Vitrification also reduced the expression of glucose transporter isoform 1 (GLUT1) (P  < 0.01). Adding a GLUT1 inhibitor reduced the glucose uptake capacity of oocytes. Furthermore, the inclusion of vitamin C into thawing and culture solutions restored abnormal glucose transportation and metabolism and improved the survival, two-cell embryo, and blastocyst rates of the vitrified groups via parthenogenesis (P  < 0.05). Overall, this method may improve the quality and efficiency of oocyte vitrification.

Restricted access

Michala Rosa Birch, Steen Dissing, Niels E Skakkebæk, and Anders Rehfeld

Ca2+ signalling controls human sperm functions necessary for successful fertilization. Multiple endocrine-disrupting chemicals have been found to activate the CatSper Ca2+ channel and thereby interfering with Ca2+ signalling in human sperm. Finasteride is prescribed to men in the fertile age to treat hair loss and its use has been associated with impaired male fertility. Due to the structural relatedness of finasteride to the endogenous CatSper ligand progesterone, this study aimed to investigate whether finasteride affects human sperm in a progestogen-like manner. The effect of finasteride on Ca2+ signalling via CatSper in human sperm was investigated in cell suspensions by single-cell imaging. Additionally, effects on sperm penetration into viscous medium and acrosome reaction were assessed. Finasteride alone caused a minor transient rise in the intracellular, free Ca2+ concentration ([Ca2+]i) at physiologically relevant concentrations. Ca2+ signals induced by PGE1 were inhibited by finasteride displaying mixed type of inhibition consistent with multiple binding sites. Finasteride did not interfere with progesterone-induced Ca2+ signalling and no effect on acrosome reaction or sperm viability was found. Finasteride significantly decreased PGE1-induced penetration into viscous medium but in concentrations above what is measured in blood and seminal fluids during regular finasteride administration. In conclusion, the use of finasteride may affect Ca2+ signalling in human sperm through an interaction with the PGE1-binding site, but to which extend it alters the chances of a successful fertilization needs further investigation. It remains to be investigated whether finasteride administration may give rise to side effects by interfering with prostaglandin signalling elsewhere in the human body.

Restricted access

Luiz Cordeiro, Hsiu-Lien Herbie Lin, Anaïs Vitorino Carvalho, Isabelle Grasseau, Rustem Uzbekov, and Elisabeth Blesbois

Male subfertility causes are very varied and sometimes related to post-gonadic maturation disruption, involving seminal plasma constituents. Among them, extracellular vesicles are involved in key exchanges with sperm in mammals. However, in birds, the existence of seminal extracellular vesicles is still debated. The aim of the present work was first to clarify the putative presence of extracellular vesicles in the seminal plasma of chickens, secondly to characterize their size and protein markers in animals showing different fertility, and finally to make preliminary evaluations of their interactions with sperm. We successfully isolated extracellular vesicles from seminal plasma of males showing the highest differences in semen quality and fertility by using ultracentrifugation protocol (pool of 3 ejaculates/rooster, n =3/condition). Size characterization performed by electron microscopy revealed a high proportion of small extracellular vesicles (probably exosomes) in chicken seminal plasma. Smaller extracellular vesicles appeared more abundant in fertile than in subfertile roosters, with a mean diameter of 65.12 and 77.18 nm, respectively. Different protein markers of extracellular vesicles were found by western blotting (n = 6/condition). Among them, HSP90A was significantly more abundant in fertile than in subfertile males. In co-incubation experiments (n = 3/condition), extracellular vesicles enriched seminal fractions of fertile males showed a higher capacity to be incorporated into fertile than into subfertile sperm. Sperm viability and motility were impacted by the presence of extracellular vesicles from fertile males. In conclusion, we successfully demonstrated the presence of extracellular vesicles in chicken seminal plasma, with differential size, protein markers and putative incorporation capacity according to male fertility status.

Free access

Yoshiteru Kai, Hiroomi Kawano, and Naoki Yamashita

Unlike in mice, multinucleated blastomeres appear at a high frequency in the two-cell-stage embryos in humans. In this Point of View article, we demonstrate that the first mitotic spindle formation led by sperm centrosome-dependent microtubule organizing centers may cause a high incidence of zygotic division errors using human tripronuclear zygotes.

Open access

Konstantina Nikolakopoulou and Margherita Y Turco

Infertility is a common problem in modern societies with significant socio-psychological implications for women. Therapeutic interventions are often needed which, depending on the cause, can either be medical treatment, surgical procedures or assisted reproductive technology (ART). However, the treatment of infertility is not always successful due to our limited understanding of the preparation of the lining of the uterus, the endometrium, for pregnancy. The endometrium is of central importance for successful reproduction as it is the site of placental implantation providing the interface between the mother and her baby. Due to the dynamic, structural and functional changes the endometrium undergoes throughout the menstrual cycle, it is challenging to study. A major advancement is the establishment of 3D organoid models of the human endometrium to study this dynamic tissue in health and disease. In this review, we describe the changes that the human endometrium undergoes through the different phases of the menstrual cycle in preparation for pregnancy. We discuss defects in the processes of endometrial repair, decidualization and acquisition of receptivity that are associated with infertility. Organoids could be utilized to investigate the underlying cellular and molecular mechanisms occurring in non-pregnant endometrium and early pregnancy. These studies may lead to therapeutic applications that could transform the treatment of reproductive failure.