You are looking at 81 - 90 of 12,231 items for

  • All content x
Clear All
Restricted access

Yingying Zhou, Yangying Peng, Qingqing Xia, Dewen Yan, Huiping Zhang, Lingmin Zhang, Ying Chen, Xiumin Zhao, and Jie Li

Indian hedgehog (Ihh) signaling regulates endometrial receptivity and is an indispensable mediator of embryonic implantation. Hedgehog signaling is known to regulate autophagy, and aberrant regulation of autophagy is critically implicated in the pathogenesis of endometriosis and adenomyosis. However, potential dysregulation of Ihh signaling and its role in autophagy modulation in these diseases remain obscure. In this study, we found that components of Ihh signaling were significantly decreased, whereas the autophagy marker protein, LC3BII, was significantly increased in endometrial tissues of women with endometriosis or adenomyosis. Inhibition of Ihh signaling with the small-molecule inhibitor GANT61 or Gli1 silencing in primary endometrial stromal cells increased autophagic activity, as measured by LC3 turnover assay and tandem mCherry-eGFP-LC3B fluorescence microscopy. Furthermore, we observed that GANT61 treatment significantly attenuated hydrogen peroxide-induced cell death, whereas disruption of autophagy with chloroquine diminished this effect. Collectively, these findings reveal that Ihh signaling is suppressed in endometrial tissues of patients with endometriosis or adenomyosis. This abnormal decrease may contribute to endometrial autophagy activation, which may promote aberrant survival of endometrial cells in ectopic sites in these two gynecological diseases.

Restricted access

Vasiliki E. Mourikes and Jodi A Flaws

The ovaries play a critical role in female reproductive health because they are the site of oocyte maturation and sex steroid hormone production. The unique cellular processes that take place within the ovary make it a susceptible target for chemical mixtures. Herein, we review the available data regarding the effects of chemical mixtures on the ovary, focusing on development, folliculogenesis, and steroidogenesis. The chemical mixtures discussed include those to which women are exposed to environmentally, occupationally, and medically. Following a brief introduction to chemical mixture components, we describe the effects of chemical mixtures on ovarian development, folliculogenesis, and steroidogenesis. Further, we discuss the effects of chemical mixtures on corpora lutea and transgenerational outcomes. Identifying the effects of chemical mixtures on the ovaries is paramount to preventing and treating mixture-inducing toxicity of the ovary that has long-term consequences such as infertility and ovarian disease.

Free access

Yu Tian and Li-quan Zhou

Invasion or damage of the male reproductive system is one of the reported outcomes of viral infection. Current studies have documented that SARS-CoV-2, which causes COVID-19, can damage the male reproductive system in large part by inflammatory damage caused by a cytokine storm. However, whether SARS-CoV-2 can infect the human testis directly and enter semen is controversial. Other adverse effects of SARS-CoV-2 on male reproduction are also of concern and require comprehensive evaluation. Here, we analyze the invasiveness of SARS-CoV-2 in the testis and examine reported mechanisms by which SARS-CoV-2 interferes with male reproduction. Long-term implications of SARS-CoV-2 infection on male reproduction are also discussed. It should be emphasized that although COVID-19 may induce testicular damage, a substantial decrease in male reproductive capacity awaits clinical evidence. We propose that there is an urgent need to track male COVID-19 patients during their recovery. The development of suitable experimental models, including human reproductive organoids, will be valuable to further investigate the viral impact on reproduction for current and future pandemics.

Restricted access

Madhulika Pathak, Venkatappa Vani, Surendra Sharma, and Polani B Seshagiri

Mammalian blastocyst hatching is a critically indispensable process for successful implantation. One of the major challenges in IVF clinics is to achieve superior embryonic development with intrinsically potent hatching-competent blastocyst. However, the molecular regulation of hatching phenomenon is poorly understood. In this study, we examined the expression and function of one of the cytokines, IL-1β during blastocyst hatching in the mouse. In particular, the expression of IL-1β (Interleukin-1β), IL-1ra (Interleukin-1 receptor antagonist) and their functional receptor IL-1rt1 (Interleukin 1 receptor type-1) in morulae, zona intact- and hatched-blastocysts was studied. Supplementation of IL-1β to cultured embryos accelerated blastocyst development with improved hatching (treated: 89.6 ± 3.6% vs untreated: 65.4 ± 4.1%). When embryos were treated with IL-1ra, blastocyst hatching was decreased (treated: 28.8 ± 3.1% vs untreated: 67.5 ± 3.8%). Moreover, IL-1β and IL-1ra influenced the expression of hatching enzymes viz., implantation serine proteases (ISP1 and ISP2). While IL-1β increased the embryonic mRNA expression of ISPs (Isp1: 2–4; Isp2: 9- to 11-fold), IL-1ra decreased expression. The protein localization studies revealed increased nuclear presence predominantly of ISP 2 in IL-1β-treated blastocysts. This is the first report to show the functional significance of embryonic IL-1β in regulating hatching-associated proteases, particularly ISP2. These findings have implications in our understanding of molecular regulation of blastocyst hatching and implantation failure in other species including humans.

Restricted access

Chao Du, John S Davis, Chao Chen, Zan Li, Ye Cao, Hui Sun, Bao-Shun Shao, Yu-Xin Lin, Yong-Sheng Wang, Li-Guo Yang, and Guo-Hua Hua

Fibroblast growth factor 2 (FGF2), a member of FGF family, binds with FGF receptors (FGFR) to initiate biological functions in various somatic cells. However, little is known regarding the role of FGF2/FGFR on oocyte meiosis. In this study, we investigated expression patterns and functions of FGF2/FGFR during in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs). Among four FGFRs, Ffgr1 was the most abundant in COCs. The transcripts for Fgf2 and Ffgr1 in COCs increased during IVM. Ffgr1 was present in oocytes and cumulus cells, while Fgf2 was present in only cumulus cells. Treatment of COCs with the selective FGFR inhibitor SU5402 blocked oocyte meiotic progression and downregulated expression of Bmp15 and Gdf9. In contrast, supplement of FGF2 promoted oocyte meiotic progression and upregulated Bmp15 and Gdf9 expression. Inhibition of FGFR with SU5402 reduced cumulus expansion and expressions of Ptx3, Has2 and Tnfaip6. Treatment with FGF2 increased Ptx3 and Has2 expression. Inhibition of FGFR had no effect on meiotic progression of denuded oocytes (DOs). However, co-culture of DOs with COCs or supplementation with FGF2 promoted meiotic progression of DOs. Inhibition of FGF2/FGFR signaling also downregulated Ffgr1 expression, while supplemental FGF2 upregulated Fgfr1 expression. Furthermore, inhibition of FGFR in COCs interrupted the c-Mos/MAPK pathway and maturation-promoting factor (MPF), as indicated by downregulation of oocyte c-mos and Ccnb1 transcripts, respectively. Overall, this study suggests that FGF2 produced by cumulus cells, activates a FGF2/FGFR autocrine/paracrine loop within COCs to regulate cumulus expansion and oocyte meiosis. These findings reveal a novel role for FGF2/FGFR signaling during in vitro maturation of COCs.

Restricted access

Xiaoxu Chen, Qian Sun, Yi Zheng, Zidong Liu, Xiangqian Meng, Wenxian Zeng, and Hongzhao Lu

Infertility caused by male factors is routinely diagnosed by assessing traditional semen parameters. Growing evidence has indicated that the tsRNAs carried in sperm act as epigenetic factors and potential biomarkers for the assessment of sperm quality. We recently demonstrated that tRNAGln-TTG derived small RNAs played notable roles in the first cleavage of a porcine embryo. However, the function of human sperm tRNAGln-TTG derived small RNAs as a diagnostic biomarker and its role in early embryo development remains unclear. In this study, we found that human sperm tRNAGln-TTG derived small RNAs were highly associated with sperm quality. By microinjecting the antisense sequence into human tripronuclear (3PN) zygotes followed by single-cell RNA-sequencing, we found that human sperm tRNAGln-TTG derived small RNAs participated in the development of a human embryo. Furthermore, Gln-TTGs might influence embryonic genome activation by modulating noncoding RNA processing. These findings demonstrated that human sperm tRNAGln-TTG derived small RNAs could be potential diagnostic biomarkers and could be used as a clinical target for male infertility.

Restricted access

Michael J Bertoldo, Valentina Rodriguez Paris, Debra A Gook, Melissa C Edwards, Katherine Wu, Cai Jun Jean Liang, Maria B Marinova, Lindsay E Wu, Kirsty A Walters, and Robert B Gilchrist

Ovarian tissue cryopreservation and future transplantation is the only strategy to preserve the fertility of young female adolescent and prepubertal patients. The primary challenge to ovarian graft longevity is the substantial loss of primordial follicles during the period of ischaemia post-transplantation. Nicotinamide mononucleotide (NMN), a precursor of the essential metabolite NAD+, is known to reduce ischaemic damage. Therefore, the objective of the current study was to assess the impact of short- and long-term NMN administration on follicle number and health following ovarian tissue transplantation. Hemi-ovaries from C57Bl6 mice (n = 8–12/group) were transplanted under the kidney capsule of bilaterally ovariectomised severe combined immunodeficient (SCID) mice. Recipient mice were administered either normal drinking water or water supplemented with NMN (2 g/L) for either 14 or 56 days. At the end of each treatment period, ovarian transplants were collected. There was no effect of NMN on the resumption of oestrous or length of oestrous cycles. Transplantation significantly reduced the total number of follicles with the greatest impact observed at the primordial follicle stage. We report that NMN did not prevent this loss. While NMN did not significantly impact the proportion of apoptotic follicles, NMN normalised PCNA expression at the primordial and intermediate stages but not at later stages. In conclusion, NMN administration did not prevent ovarian follicle loss under the conditions of this study.

Restricted access

Afsaneh Khoshkerdar, Ece Eryasar, Hannah L Morgan, and Adam J Watkins

Pregnancy represents a time of dramatic physiological adaptation by the mother in which dramatic changes in maternal cardiovascular, metabolic and immune systems occur. These adaptations, initiated from the earliest stages of gestation, are crucial for the implantation and continued development of the embryo, the establishment of the placenta and the growth of the fetus. Impairments in the normal adaptation of the maternal cardiovascular, metabolic and immune systems underlie the aetiology of gestational disorders such as preeclampsia and gestational diabetes. Studies have shown that the development of such gestational complications not only affects the well-being of the mother but also the short- and long-term health of her offspring. While the connection between maternal lifestyle factors and the development of gestational disorders such as preeclampsia and gestational diabetes has been studied in detail, the link between a father’s lifestyle and the well-being of the mother during pregnancy has received less attention. In this review we will explore the evidence that a range of paternal factors, such as age and diet, at the time of conception can not only affect the development of his offspring, but also the well-being of the mother during pregnancy. In addition, we will examine the sperm- and seminal plasma-specific mechanisms that connect the health of the father with that of the mother and his offspring.

Free access

K Grace Foley, Michele T Pritchard, and Francesca E Duncan

Inflammaging is a state of chronic, low-grade inflammation associated with aging which contributes to age-related diseases. Recently, an age-associated increase in inflammation has been documented in the mammalian ovary, which is accompanied by a shift in the immune cell profile. In this Point of View article, we consider a unique population of macrophage-derived multinucleated giant cells, found in reproductively old mouse ovaries, as potential markers or functional drivers of inflammation in ovarian aging.

Free access

Leelabati Biswas, Katarzyna Tyc, Warif El Yakoubi, Katie Morgan, Jinchuan Xing, and Karen Schindler

Idiopathic or ‘unexplained’ infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.