Browse

You are looking at 1 - 10 of 12,531 items for

  • Refine by Access: All content x
Clear All
Restricted access

Beatriz Macías-García and Lauro González-Fernández

In brief

The mechanism by which p32 protein increases during capacitation in boar spermatozoa is unknown. This manuscript shows a new mechanism of induction of p32 in boar spermatozoa: the proteolysis of the phosphorylated and glycosylated form of SPACA1.

Abstract

Protein tyrosine phosphorylation (PY) induction is associated with sperm capacitation. We previously showed that calcium-sensing receptor (CASR) inhibition by NPS2143 induces the 32 kDa tyrosine-phosphorylated protein (p32) in boar spermatozoa. We showed that NPS2143 induced an increase in p32 and loss of acrosomal integrity in live and dead spermatozoa in capacitating conditions (Tyrode's complete medium); the p32 rise occurred in dead spermatozoa, as shown by flow cytometry sorting. EGTA addition blunted the increase in p32, the loss of acrosomal integrity, and the increase in dead spermatozoa induced by NPS2143, indicating that the effects of NPS2143 are calcium-dependent. Mass spectrometry was used to identify which tyrosine-phosphorylated proteins were induced by NPS2143, but only serine/threonine-phosphorylated proteins were found; among these, SPACA1 was identified with different molecular weights (18, 32, and 35–45 kDa). We confirmed tyrosine phosphorylation of SPACA1 at 32 and 35–45 kDa by immunoprecipitation and co-localization of PY and SPACA1 in the presence of NPS2143 by immunofluorescence. The molecular weight of SPACA1 (35–45 kDa) decreased after treatment with peptide-N-glycosidase F, indicating that this protein is N-glycosylated. The soybean trypsin inhibitor (STI), a serine protease inhibitor, suppressed the appearance of p32 and SPACA1 (30 and 32 kDa) induced by NPS2143. Also, 8-Br-cAMP and A23187 treatments induced an increase in p32 and SPACA1 (30–32 kDa) and a parallel induction of the acrosome reaction. These findings suggest that CASR inhibition induces loss of acrosomal integrity and proteolysis of the glycosylated and phosphorylated SPACA1 (35–45 kDa) resulting in a SPACA1 rise at 32 kDa (p32).

Restricted access

Teruhito Ishihara, Jane C Fenelon, Oliver W Griffith, Kei-ichiro Ishiguro, and Marilyn B Renfree

In brief

Apart from mice, meiosis initiation factors and their transcriptional regulation mechanisms are largely unknown in mammals. This study suggests that STRA8 and MEIOSIN are both meiosis initiation factors in mammals, but their transcription is epigenetically regulated differently from each other.

Abstract

In the mouse, the timing of meiosis onset differs between sexes due to the sex-specific regulation of the meiosis initiation factors, STRA8 and MEIOSIN. Before the initiation of meiotic prophase I, the Stra8 promoter loses suppressive histone-3-lysine-27 trimethylation (H3K27me3) in both sexes, suggesting that H3K27me3-associated chromatin remodelling may be responsible for activating STRA8 and its co-factor MEIOSIN. Here we examined MEIOSIN and STRA8 expression in a eutherian (the mouse), two marsupials (the grey short-tailed opossum and the tammar wallaby) and two monotremes (the platypus and the short-beaked echidna) to ask whether this pathway is conserved between all mammals. The conserved expression of both genes in all three mammalian groups and of MEIOSIN and STRA8 protein in therian mammals suggests that they are the meiosis initiation factors in all mammals. Analyses of published DNase-seq and chromatin-immunoprecipitation sequencing (ChIP-seq) data sets confirmed that H3K27me3-associated chromatin remodelling occurred at the STRA8, but not the MEIOSIN, promoter in therian mammals. Furthermore, culturing tammar ovaries with an inhibitor of H3K27me3 demethylation before meiotic prophase I affected STRA8 but not MEIOSIN transcriptional levels. Our data suggest that H3K27me3-associated chromatin remodelling is an ancestral mechanism that allows STRA8 expression in mammalian pre-meiotic germ cells.

Restricted access

Xue-Yun Qin, Hui-Hui Shen, Xin-Yan Zhang, Xing Zhang, Feng Xie, Wen-Jun Wang, Yu Xiong, Jie Mei, and Ming-Qing Li

In brief

Hypoxia is vital for the establishment of the maternal–fetal interface during early pregnancy. This study shows that decidual macrophages (dMφ) could be recruited and reside in decidua under the regulation of hypoxia/VEGFA-CCL2 axis.

Abstract

Infiltration and residence of decidual macrophages (dMφ) are of great significance to pregnancy maintenance for their role in angiogenesis, placental development, and inducing immune tolerance. Besides, hypoxia has now been acknowledged as an important biological event at maternal–fetal interface in the first trimester. However, whether and how hypoxia regulates biofunctions of dMφ remain elusive. Herein, we observed increased expression of C–C motif chemokine ligand 2 (CCL2) and residence of macrophages in decidua compared to secretory-phase endometrium. Moreover, hypoxia treatment on stromal cells improved the migration and adhesion of dMφ. Mechanistically, these effects might be mediated by upregulated CCL2 and adhesion molecules (especially ICAM2 and ICAM5) on stromal cells in the presence of endogenous vascular endothelial growth factor-A (VEGFA) in hypoxia. These findings were also verified by recombinant VEGFA and indirect coculture, indicating that the interaction between stromal cells and dMφ in hypoxia condition may facilitate dMφ recruitment and residence. In conclusion, VEGFA derived from a hypoxic environment may manipulate CCL2/CCR2 and adhesion molecules to enhance the interactions between dMφ and stromal cells and thus contribute to the enrichment of macrophages in decidua early during normal pregnancy.

Restricted access

Mathilde Daudon, Christelle Ramé, Christopher Price, and Joëlle Dupont

In brief

Fertility in the dairy cow is low during the post-partum period of negative energy balance and high plasma irisin concentrations. This study shows irisin modulates granulosa cell glucose metabolism and impairs steroidogenesis.

Abstract

Fibronectin type III domain-containing 5 (FNDC5) is a transmembrane protein discovered in 2012 that is cleaved to release the adipokine-myokine, irisin. Originally described as an exercise hormone that browns white adipose tissue and increases glucose metabolism, irisin secretion also increases during periods of rapid adipose mobilization, such as the post-partum period in dairy cattle when ovarian activity is suppressed. The effect of irisin on follicle function is unclear and may be species-dependent. In this study, we hypothesized that irisin may compromise granulosa cell function in cattle using a well-established in vitro cell culture model. We detected FNDC5 mRNA and both FNDC5 and cleaved irisin proteins in follicle tissue and in follicular fluid. The abundance of FNDC5 mRNA was increased by the treatment of cells with the adipokine visfatin but not by other adipokines tested. The addition of recombinant irisin to granulosa cells decreased basal and insulin-like growth factor 1- and follicle-stimulating hormone-dependent estradiol and progesterone secretion and increased cell proliferation but had no effect on viability. Irisin decreased GLUT1, GLUT3, and GLUT4 mRNA levels in granulosa cells and increased lactate release in the culture medium. The mechanism of action is in part through MAPK3/1 but not Akt, MAPK14, or PRKAA. We conclude that irisin may regulate bovine folliculogenesis by modulating granulosa cell steroidogenesis and glucose metabolism.

Free access

Dominika Celar Sturm and Irma Virant-Klun

In brief

Bisphenol A (BPA) is a widely produced chemical, mostly used in the production of polycarbonate plastics, and can act as an endocrine disruptor. This paper focuses on the different effects of BPA on ovarian granulosa cells.

Abstract

Bisphenol A (BPA) is an endocrine disruptor (ED), widely used as a comonomer or an additive in the plastics industry. It can be found in food and beverage plastic packaging, epoxy resins, thermal paper and other common products. To date, there have only been several experimental studies to have examined how BPA exposure affects human and mammalian follicular granulosa cells (GCs) in vitro and in vivo; the collected evidence data show that BPA negatively affects the GCs by altering steroidogenesis and gene expression, inducing autophagy, apoptosis and cellular oxidative stress through reactive oxygen species production. Exposure to BPA can also lead to abnormally constrained or elevated cellular proliferation and can even reduce cell viability. Therefore, research on EDs such as BPA is important as it provides some important insights into the causes and development of infertility, ovarian cancer and other conditions related to impaired ovarian and GC function. Folic acid, a biologic form of vitamin B9, is a methyl donor that can neutralize the toxic effects of the BPA exposure and is, as a common food supplement, an interesting option for researching its protective role against ubiquitous harmful EDs such as BPA.

Restricted access

Miji Kim, Junho Park, Garam An, Whasun Lim, and Gwonhwa Song

In brief

Pendimethalin as a dinitroaniline herbicide is used to eliminate weeds during the cultivation of various crops such as grains, fruits, and vegetables. This study reveals that pendimethalin exposure at various concentrations led to disruption in Ca2+ homeostasis and mitochondrial membrane potential, as well as dysregulation of the mitogen-activated protein kinase signaling pathway and implantation-related genes in porcine trophectoderm and uterine luminal epithelial cells.

Abstract

The use of herbicides is a major control method in agriculture. Pendimethalin (PDM) has been increasingly used as a herbicide for approximately 30 years. PDM has been reported to cause various reproductive problems, but its toxicity mechanism in the pre-implantation stage has not been investigated in detail. Herein, we studied the effects of PDM on porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells and identified a PDM-mediated anti-proliferative effect in both cell types. PDM exposure generated intracellular reactive oxygen species, induced excessive Ca2+ influx into mitochondria, and activated mitogen-activated protein kinase signaling pathway. Ca2+ burden resulted in the dysfunction of mitochondria and eventual disruption of Ca2+ homeostasis. Further, PDM-exposed pTr and pLE cells showed cell cycle arrest and programmed cell death. In addition, a decrease in migration ability and dysregulated expression of genes related to the functioning of pTr and pLE cells was evaluated. This study provides insight into time-dependent transitions within the cell environment after PDM exposure and elucidates a detailed mechanism of induced adverse effects. These results imply that PDM exposure can potentially cause toxic effects on the implantation-related process in pigs. Moreover, to the best of our knowledge, this is the first study to describe the mechanism by which PDM induces these effects, enhancing our understanding of the toxicity of this herbicide.

Open access

Justyna Gogola-Mruk, Weronika Marynowicz, Kinga Krawczyk, and Anna Ptak

In brief

The role of visfatin in ovarian granulosa cell tumor (GCT) invasion and glucose metabolism reprogramming is largely unexplored. These studies imply that visfatin or its inhibitor is involved in regulating ovarian granuloma invasion by reprogramming glucose metabolism and may be a potential candidate for the diagnosis and treatment of ovarian GCT.

Abstract

Visfatin is an adipokine with nicotinamide phosphoribosyltransferase (NAMPT) activity, the concentration of which is higher in ascitic fluid than in serum, and is associated with ovarian cancer peritoneal dissemination. Potentially important effects of visfatin on glucose metabolism have been previously reported. However, the mechanism underlying the effects of visfatin on ovarian cancer cell invasion, and whether this involves altered glucose metabolism, has not been elucidated. Here, we tested the hypothesis that visfatin, which can reprogram cancer metabolism, promotes invasion by ovarian cancer spheroids. Visfatin increased glucose transporter (GLUT)1 expression and glucose uptake in adult granulosa cell tumor-derived spheroid cells (KGN) and also increased the activities of hexokinase 2 and lactate dehydrogenase. We showed a visfatin-induced increase in glycolysis in KGN cells. Moreover, visfatin increased the potential invasiveness of KGN spheroid cells by upregulating MMP2 (matrix metalloproteinase 2) and downregulating CLDN3 and CLDN4 (claudin 3 and 4) gene expression. Interestingly, an inhibitor of GLUT1 and lactate dehydrogenase (LDHA) abolished the stimulatory effect of visfatin on the potential invasiveness of KGN cells. More importantly, silencing expression of the NAMPT gene in KGN cells demonstrated its important effect on glycolysis and invasiveness in adult granulosa cell tumor cells (AGCTs). In summary, visfatin appears to increase AGCT invasiveness through effects on glucose metabolism and to be an important regulator of glucose metabolism in these cells.

Restricted access

Yanfang Wu, Zhenzi Zuo, Zheng Wang, Hanghang Liu, Qi Zhou, Subi Ren, Xinrui Lan, Yong Zhang, and Yongsheng Wang

In brief

Almost total lack of sperm-borne RNAs is regarded as one of the key factors that leads to the abnormal development of somatic cell nuclear transfer embryo. This paper reveals a need for us to further explore the roles of the paternal regulatory factors on embryonic development in early embryos.

Abstract

Mature sperm contain both coding and non-coding RNAs, which can be delivered into an oocyte with the sperm at fertilization. Accumulating evidences show that these sperm-borne RNAs play crucial roles in epigenetic reprogramming, cytoskeleton remodeling, embryonic development, and offspring phenotype. Almost total lack of sperm-borne RNAs is regarded as one of the key factors that leads to the abnormal development of somatic cell nuclear transfer (SCNT) embryo. bta-miR-183 was found to be highly expressed in bovine sperm and can be delivered into oocytes during fertilization in our previous study, and in this study, EZR was confirmed as a target gene of bta-miR-183 in early embryos by bioinformatics, luciferase, and gain-of-function and loss-of-function experiments. Scanning electron microscopy showed that the density of microvilli on the surface of SCNT embryos was significantly higher than that onin vitro fertilized embryos and was significantly reduced by injection of bta-miR-183 mimic. EZR-siRNA injected into SCNT embryos had a similar effect. This indicated that the lack of bta-miR-183 might lead to abnormal changes in microvilli by downregulating ezrin protein. In addition, gain-of-function studies showed that bta-miR-183 significantly improved developmental competence of SCNT embryo in terms of cleavage (76.63% vs 64.32%, P < 0.05), blastocyst formation (43.75% vs 28.26%, P < 0.05), apoptotic index (5.21% vs 12.64%, P < 0.05), and the trophoblast ratio (32.65% vs 25.58%, P < 0.05) in day 7 blastocysts. Thus, the present study indicated that bta-miR-183 might play crucial roles in the formation of microvilli and embryo development by regulating expression of EZR mRNA.

Free access

Savana Biondic, Jesica Canizo, Katherine Vandal, Cheng Zhao, and Sophie Petropoulos

In brief

Human embryogenesis still remains largely unexplored. This review helps identify some of our current gaps in knowledge pertaining to preimplantation development, which may have implications for understanding fundamental aspects of human development, assisted reproductive technologies, and stem cell biology.

Abstract

Preimplantation development is arguably one of the most critical stages of embryogenesis. Beginning with the formation of the totipotent zygote post-fertilization, a series of cell divisions, and a complex coordination of physical cues, molecular signals and changes in gene expression lead to the formation of the blastocyst, a structure capable of implanting into the uterine wall. The blastocyst is composed of more specified cellular lineages, which will give rise to every tissue of the developing organism as well as the extra-embryonic lineages which support fetal growth. While the mouse has been used as a model to understand the events of preimplantation development for decades, in recent years, an expanding body of work has been conducted using the human embryo. These studies have identified some crucial species differences, particularly in the transcriptional and spatio-temporal expression of lineage markers and responses to cell signaling perturbations. This review compares recent findings on preimplantation development in mouse and human, with a focus on the specification of the first cellular lineages. Highlighting differences and noting mechanisms that require further examination in the human embryo is of critical importance for both the accurate translation of results from the mouse model and our overall understanding of mammalian development. We further highlight the latest advancement in reproductive research, the development of the 3D stem cell-based models known as ‘blastoids’. The knowledge discussed in this review has major clinical implications for assisted reproductive technologies such as in vitro fertilization and for applications in stem cell biology.

Restricted access

Qiuling Jie, Lijun Chen, Jiangying Liang, Xiaohui Yang, Fei Sun, and Yanlin Ma

In brief

Preeclampsia is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes, but the mechanisms underlying the development of preeclampsia are not fully understood. This study shows that ETV4 plays an essential role in the proliferation, invasion, and migration of trophoblast cells by regulating MMP-2 and MMP-9 and is involved in the pathogenesis of preeclampsia.

Abstract

Preeclampsia (PE) is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes. However, the mechanisms underlying the development of PE are not fully understood. ETS Variant Transcription Factor 4 (ETV4) plays an important role in cell proliferation, migration, and invasion. In this study, we aimed to explore the potential function of ETV4 in placental trophoblast cells. We analyzed the expression and location of ETV4 in PE and uncomplicated placental tissues using RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence staining. The results showed that both the mRNA and protein levels of ETV4 were markedly decreased in PE placental tissues compared with placental tissues from women with uncomplicated pregnancies (P < 0.05). Then, the effects of ETV4 on HTR-8/SVneo and Bewo cell proliferation, migration, and invasion were evaluated by MTT, 5-ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays, respectively. The results showed that ETV4 knockdown inhibited both HTR-8/SVneo and Bewo cell proliferation, migration, and invasion (P < 0.05). Conversely, overexpression of ETV4 promoted both HTR-8/SVneo and Bewo cell proliferation, migration, and invasion (P < 0.05). We then measured the expression of MMP-2 and MMP-9 in HTR8/SVneo cells. We found that ETV4 knockdown decreased the mRNA and protein expression of MMP-2 and MMP-9, while ETV4 overexpression increased MMP-2 and MMP-9 mRNA and protein expression (P < 0.05). In conclusion, ETV4 plays an essential role in the proliferation, invasion, and migration of trophoblast cells by regulating MMP-2 and MMP-9. Our findings provide novel insight into the mechanisms underlying the occurrence of PE.