Browse

You are looking at 51 - 60 of 11,972 items for

Free access

Marilyn B Renfree

Free access

Nathalie Josso

Anti-Müllerian hormone (AMH) is a member of the TGF-β family secreted by immature Sertoli cells and by granulosa cells of growing ovarian follicles. In males, it induces the regression of fetal Müllerian ducts and represses androgen synthesis through receptors located on the Leydig cell membrane. In female mice, AMH inhibits primary follicle recruitment and sensitivity to FSH. Measurement of circulating AMH is of value to pediatric endocrinologists allowing them to detect the presence and functional activity of testicular tissue without resorting to stimulation by human chorionic gonadotropin. In women, AMH levels are correlated with the size of the ovarian follicle pool and provide information on the likelihood of spontaneous or induced pregnancy.

Free access

JoAnne S Richards

My career has been about discovering science and learning the joys of the discovery process itself. It has been a challenging but rewarding process filled with many exciting moments and wonderful colleagues and students. Although I went to college to become a French major, I ultimately stumbled into research while pursuing a Masters Degree in teaching. Thus, my research career began in graduate school where I was studying NAD kinase in the ovary as a possible regulator of steroidogenesis, a big issue in the late 1960s. After a short excursion of teaching in North Dakota, I became a postdoctoral fellow at the University of Michigan, where radio-immuno assays and radio receptor assays had just come on the scene and were transforming endocrinology from laborious bioassays to quantitative science and of course these assays related to the ovary. From there I went to Baylor College of Medicine, a mecca of molecular biology, cloning genes and generating mouse models. It has been a fascinating and joyous journey.

Free access

Patricia A Hunt

Perhaps every career makes sense in retrospect. I have spent mine facing a series of accidental environmental exposures that derailed our studies but provided new insight. Although at times I have felt more catalyst than scientist, the journey has been extraordinary, and the problem I have spent my career studying – human aneuploidy – has taken on new significance with growing evidence of the sensitivity of the germline to the environment.

Free access

Teresa K Woodruff

The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey – what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an ‘artificial’ ovary became possible by learning what the follicle is fundamentally and autonomously capable of – which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time – a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today’s basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow’s patients is yet to be determined.

Free access

Lois A Salamonsen

The focus of my life in science has been to improve reproductive health for women, with an emphasis on the endometrium, the most dynamic tissue in the human body: its remarkable cyclical remodelling is essential for the establishment of pregnancy. The most notable events in a woman’s endometrial cycle are menstruation and endometrial repair, regeneration of the endometrium during the proliferative phase, attainment of receptivity by the mid-secretory phase of the cycle and the embryo–maternal interactions that initiate peri-implantation events within the microenvironment of the uterine cavity. I have contributed to understanding the molecular and cellular changes underpinning these events, and how disturbance of them leads to menstrual disorders, infertility and endometrial diseases including abnormal uterine bleeding, endometriosis and endometrial cancer. My team has contributed to changes in clinical IVF practice, to a new diagnostic for endometrial receptivity in infertile women and to enhancing endometrial repair. I have shared my world with many amazing younger scientists: it has indeed been a privileged journey.

Free access

Marilyn B Renfree

Australia is home to a unique assembly of mammals – the marsupials and monotremes. Despite this uniqueness, they have been largely ignored by the biomedical scientific community, and yet study of marsupials has contributed to modern research on reproduction, development, evolution, conservation, molecular and comparative genomics. My lifetime passion for these long-neglected Australian fauna has led to unexpected discoveries and insights that challenged assumptions and opened up new areas of international research. I used a range of disciplinary expertise to pursue the study of these unique mammals. My main experimental species has been the tammar wallaby that I have used as a model species to investigate and understand not only biomedical problems but also to provide knowledge that is critical for the continued conservation and management of Australia’s dwindling native mammals. This model provided more than a few surprises for me and my wonderful team of students, post-docs and collaborators about how hormones, genes and signalling molecules control reproductive biology and development in a wider context as well as how the interactions of the environment with mother and conceptus, with mother and fetus and mother and young ultimately control most aspects of successful reproduction in mammals.

Free access

Blanche Capel

Work that established the testis as the driver of male development, and the Y chromosome as the bearer of the male-determining gene, established a working model, and set the stage for the molecular age of mammalian sex determination. The discovery and characterization of Sry/SRY at the top of the hierarchy in mammals launched the field in two major directions. The first was to identify the downstream transcription factors and other molecular players that drive the bifurcation of Sertoli and granulosa cell differentiation. The second major direction was to understand organogenesis of the early bipotential gonad, and how divergence of its two distinct morphogenetic pathways (testis and ovary) is regulated at the cellular level. This review will summarize the early discoveries soon after Sry was identified and focus on my study of the gonad as a model of organogenesis.

Restricted access

Joao Alveiro Alvarado Rincón, Patricia Carvalho Gindri, Bruna Mion, Ferronato Giuliana de Ávila, Antônio Amaral Barbosa, Andressa Stein Maffi, Jorgea Pradieé, Rafael Gianella Mondadori, Marcio Nunes Corrêa, Pegoraro Ligia Margareth Cantarelli and Augusto Schneider

The aim of this study was to evaluate the effect of exposing bovine oocytes to lipopolysaccharides (LPS) in vivo and in vitro on early embryo development. In experiment 1, cumulus oocyte complexes (COCs, n = 700/group) were challenged with 0, 0.1, 1.0 or 5.0 μg/mL of LPS during in vitro maturation (IVM). Later, in vitro fertilization (IVF) and in vitro culture (IVC) were performed. In experiment 2, COCs (n = 200/group) matured and in vitro fertilized without LPS were subjected to IVC with the same doses of LPS from experiment 1. In experiment 3, heifers received two injections of saline solution (n = 8) or 0.5 μg/kg of LPS (n = 8) 24 h apart, and 3 days later, COCs were recovered and submitted to IVM, IVF, and IVC. In experiments 1 and 3, the expression of TLR4, TNF, AREG and EREG genes in cumulus cells was evaluated. Exposure to 1 and 5 μg/mL of LPS during IVM decreased nuclear maturation (39.4 and 39.6%, respectively) compared with control (63.6%, P < 0.05). Despite that, no effect on cleavage and blastocyst rates were observed. Exposure to LPS during IVC did not affect embryonic development. In vivo exposure to LPS decreased the in vitro cleavage rate (54.3 vs 70.2%, P = 0.032), but cleaved embryos developed normally. Number of cells per embryo and gene expression were not affected by the LPS challenge in any experiment. In conclusion, although in vitro exposure to LPS did not affect early embryo development, in vivo LPS exposure reduced cleavage rate.

Free access

Changwon Yang, Gwonhwa Song and Whasun Lim

In humans, pregnancy maintenance depends on normal placental formation following trophoblast invasion into the endometrium and vascular remodeling. In the early stages of pregnancy, immune tolerance, inflammatory response and adaptation to hypoxia need to be precisely regulated in the placental microenvironment. Various types of cells, such as trophoblasts, endothelial cells, immune cells, mesenchymal stem cells (MSCs) and adipocytes, induce normal placental development via intercellular interactions through soluble factors. Extracellular vesicles (EVs) are used to diagnose various diseases because their constituents vary depending on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and the invasion of trophoblasts through intercellular delivery in the placental microenvironment. If the placenta does not adapt to the changed environment during early pregnancy, pregnancy disorders such as pre-eclampsia, preterm birth and gestational diabetes mellitus can occur. Thus, the important roles of EVs during pregnancy and development is fast emerging. This review describes the physiological role of EVs during placentation and their composition in the human placenta. It also suggests the possibility of finding EV markers that can diagnose pregnancy disorders. Furthermore, it describes the properties of EVs that affect pregnancy in livestock.