Browse

You are looking at 1 - 10 of 12,551 items for

  • Refine by Access: All content x
Clear All
Restricted access

Margeaux W Marbrey, Elizabeth S Douglas, Emma R Goodwin, and Kathleen M Caron

In brief

Healthy development of the placenta is dependent on trophoblast cell migration and reduced oxidative stress presence. This article describes how a phytoestrogen found in spinach and soy causes impaired placental development during pregnancy.

Abstract

Although vegetarianism has grown in popularity, especially among pregnant women, the effects of phytoestrogens in placentation lack understanding. Factors such as cellular oxidative stress and hypoxia and external factors including cigarette smoke, phytoestrogens, and dietary supplements can regulate placental development. The isoflavone phytoestrogen coumestrol was identified in spinach and soy and was found to not cross the fetal–placental barrier. Since coumestrol could be a valuable supplement or potent toxin during pregnancy, we sought to examine its role in trophoblast cell function and placentation in murine pregnancy. After treating trophoblast cells (HTR8/SVneo) with coumestrol and performing an RNA microarray, we determined 3079 genes were significantly changed with the top differentially changed pathways related to the oxidative stress response, cell cycle regulation, cell migration, and angiogenesis. Upon treatment with coumestrol, trophoblast cells exhibited reduced migration and proliferation. Additionally, we observed increased reactive oxygen species accumulation with coumestrol administration. We then examined the role of coumestrol within an in vivo pregnancy by treating wildtype pregnant mice with coumestrol or vehicle from day 0 to 12.5 of gestation. Upon euthanasia, fetal and placental weights were significantly decreased in coumestrol-treated animals with the placenta exhibiting a proportional decrease with no obvious changes in morphology. Therefore, we conclude that coumestrol impairs trophoblast cell migration and proliferation, causes accumulation of reactive oxygen species, and reduces fetal and placental weights in murine pregnancy.

Free access

Camila Bruna de Lima, Érika Cristina dos Santos, and Marc-André Sirard

In brief

This review discusses advances in the knowledge of epigenetic mechanisms regulating mitochondrial DNA and the relationship with reproductive biology.

Abstract

Initially perceived simply as an ATP producer, mitochondria also participate in a wide range of other cellular functions. Mitochondrial communication with the nucleus, as well as signaling to other cellular compartments, is critical to cell homeostasis. Therefore, during early mammalian development, mitochondrial function is reported as a key element for survival. Any mitochondrial dysfunction may reflect in poor oocyte quality and may impair embryo development with possible long-lasting consequences to cell functions and the overall embryo phenotype. Growing evidence suggests that the availability of metabolic modulators can alter the landscape of epigenetic modifications in the nuclear genome providing an important layer for the regulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the mechanisms involved remain largely obscure and controversial. Mitochondrial epigenetics, also known as ‘mitoepigenetics’ is an intriguing regulatory mechanism in mitochondrial DNA (mtDNA)-encoded gene expression. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in reproductive biology and preimplantation development. A better comprehension of the regulatory role of mitoepigenetics will help the understanding of mitochondrial dysfunction and provide novel strategies for in vitro production systems and assisted reproduction technologies, as well as prevent metabolic related stress and diseases.

Free access

Anthony M Carter, Francisco Acuña, and Claudio G Barbeito

In brief

Current research on the genomics, ecology and reproductive biology of hystricomorph rodents relies on the pioneering studies of B J Weir and I W Rowlands. We show the enduring influence of a symposium on hystricomorph biology held 50 years ago.

Abstract

The rodent suborder Hystricomorpha comprises seven families from Africa and Asia and ten from South America, where they have undergone an extensive radiation and occupy a variety of biomes. Although the guinea pig was a common laboratory rodent, little was known about reproductive biology in the other species until the ambitious research programme of Barbara Weir and her mentor I W Rowlands. Much of their work and of others then in the field was summarized at a symposium held 50 years ago at The Zoological Society of London. Currently, there is a resurgence of interest in the reproductive biology of the South American species. Compared to other rodents, unique features include a long gestation, a long oestrous cycle, a tendency to form accessory corpora lutea and a vaginal closure membrane. There is a distinctive placental structure, the subplacenta. Most give birth to precocial young. Individual species exhibit peculiarities such as polyovulation, systematic fetal loss and an active female prostate. Here, we highlight the achievements of Barbara Weir and show how her legacy has been sustained in the twenty-first century by South American scientists.

Restricted access

Jianqiu Han, Chen Zhao, Huixia Guo, Tengfei Liu, Yongmei Li, Yalei Qi, Jan M Deussing, Yanjia Zhang, Juan Tan, Honghui Han, and Xueyun Ma

In brief

The current declining trend in male fertility parallels the increasing prevalence of obesity worldwide. This paper revealed that the poor in vitro fertilization rates and decreased sperm motility in obese mice due to excessive oxidative stress enhanced apoptosis and impaired glucose metabolism in the testes.

Abstract

Obesity is an urgent public health problem in recent decades, linked to reduced reproductive potential, and negatively affects the success of assisted reproduction technology. The aim of this study is to investigate the mechanisms underlying impaired male fertility caused by obesity. Male C57BL/6 mice fed a high-fat diet for 20 weeks served as mouse models with moderate (20% < body fat rate (BFR) < 30%) and severe obesity (BFR > 30%). Our results showed poor in vitro fertilization rates and decreased sperm motility in obese mice. Abnormal testicular structures were identified in male mice with moderate and severe obesity. The expression level of malondialdehyde increased with obesity severity. This finding indicates that oxidative stress plays a role in male infertility caused by obesity, which was further confirmed by the decreased expression of nuclear factor erythroid 2-related factor 2, superoxide dismutase, and glutathione peroxidases. Our study also found that the expression of cleaved caspase-3 and B-cell lymphoma-2 showed an obesity severity-dependent manner indicating that apoptosis is highly correlated with male infertility caused by obesity. Moreover, the expression of glycolysis-related proteins, including glucose transporter 8, lactate dehydrogenase A, monocarboxylate transporter 2 (MCT2), and MCT4, decreased significantly in the testes of obese male mice, suggesting energy supply for spermatogenesis is impaired by obesity. Taken together, our findings provide evidence that obesity impairs male fertility through oxidative stress, apoptosis, and blockage of energy supply in the testes and suggest that male obesity influences fertility through complex and multiple mechanisms.

Restricted access

James V Constantino, Ana Carranza-Martin, Christopher Premanandan, Brian W Kirkpatrick, Milo C Wiltbank, and Alvaro Garcia-Guerra

In brief

The bovine high fecundity allele, Trio, results in the occurrence of multiple ovulations and is characterized by antral follicles that develop slower and acquire ovulatory capacity at smaller sizes. This study provides novel information on the effect of the Trio allele on early folliculogenesis.

Abstract

The bovine high fecundity allele, Trio, causes overexpression in granulosa cells (GCs) of SMAD6, an inhibitor of BMP15-activated SMAD signalling. Furthermore, the Trio allele results in antral follicles that develop slower, acquire ovulatory capacity at smaller sizes, and have three-fold greater ovulation rate compared to half-sib non-carriers. The present study was designed to determine preantral follicle numbers and size in Trio carrier and non-carrier cattle testing the hypothesis that inhibition of SMAD signalling would alter preantral follicle activation and/or growth. Ovarian tissues from Trio carrier (n = 12) and non-carrier (n = 12) heifers were obtained by laparotomy after follicle wave synchronization. Follicle numbers and dimensions were determined for each stage of development (primordial, transitional, primary, and secondary) from paraffin-embedded sections. There were no differences in the number of primordial, transitional, or secondary follicles or in antral follicle count, circulating AMH, or ovarian volume between carriers and non-carriers. Trio carriers had ~2.5-fold greater (P < 0.01) number of primary follicles than non-carriers, and transitional and primary follicles were larger (~1.2-fold; P < 0.1) in Trio carriers. Oocyte volume of primordial and transitional follicles was not different between genotypes; however, oocytes were larger (P < 0.05) in primary (~1.3-fold) and secondary (~1.8-fold) follicles for Trio carriers. Granulosa cell numbers were not different (P > 0.3) between carriers and non-carriers, irrespective of the stage of development. These results suggest that, after primordial follicle activation, follicles in Trio carrier cattle have slower progression through the primary stage, hence the larger oocyte and greater number of primary follicles.

Restricted access

Tengteng Li, Jiajia Fei, Huihui Yu, Xingxing Wang, Dan Li, and Zongzhi Yin

In brief

During pregnancy, uterine kept quiescence along with uterine overdistention before labor. Prolonged stretching induced uterus myometrial hypoxia, increased TREK1 expression, and relaxed the myometrium, which may contribute to uterine quiescence and atony during pregnancy.

Abstract

The mechanisms underlying pre-labor uterine quiescence and uterine atony during overdistention are unclear. TREK1 (a two-pore domain potassium channel) and hypoxia-inducible factor-1α (HIF-1α) are activated by mechanical stretch, and their expression is upregulated by decreased uterine contractility. HIF-1α is a nuclear factor which regulates numerous target proteins, but whether it regulates TREK1 during the uterine stretch to cause uterine quiescence and/or atony is unclear. We investigated uterine contractility at different gestational stages in rats, as well as in non-pregnant uteri, which were induced by prolonged stretching and hypoxia. We also assessed the effects of incubating the uteri with or without echinomycin or l-methionine. Moreover, we analyzed HIF-1α and TREK1 expression levels in each group, as well as at various gestational stages of pregnant human uteri. We found that contractility was significantly decreased in pregnant uteri when compared with non-pregnant uteri, and this decrease was associated with increases in HIF-1α and TREK1 expression levels. HIF-1α and TREK1 expression levels in human uteri increased with the gestational length. Decreased uterine contractility and increased HIF-1α and TREK1 expression levels were also observed in non-pregnant rat uteri under 8 g of stretching tension or hypoxia. Inhibition of hypoxia with echinomycin restored normal uterine contractility, while HIF-1α and TREK1 protein expression remained reduced. TREK1 inhibition with l-methionine also restored uterine contractility under tension or hypoxia. In conclusion, we demonstrated that prolonged stretching induces myometrial hypoxia, increases TREK1 expression, and relaxes the myometrium, which may contribute to uterine quiescence and atony.

Open access

Lin Chen, Weijie Zhao, Mengxiong Li, Yazhu Yang, Chengzi Tian, Dengyang Zhang, Zhiguang Chang, Yunzhe Zhang, Zhizhuang Joe Zhao, Yun Chen, and Lin Ma

In brief

The establishment and maintenance of embryo implantation and pregnancy require decidualization of endometrial stromal cells. This paper reveals that SHP2 ensures the correct subcellular localization of progesterone receptor, thereby safeguarding the process of decidualization.

Abstract

Decidualization is the process of conversion of endometrial stromal cells into decidual stromal cells, which is caused by progesterone production that begins during the luteal phase of the menstrual cycle and then increases throughout pregnancy dedicated to support embryonic development. Decidualization deficiency is closely associated with various pregnancy complications, such as recurrent miscarriage (RM). Here, we reported that Src-homology-2-containing phospho-tyrosine phosphatase (SHP2), a key regulator in the signal transduction process downstream of various receptors, plays an indispensable role in decidualization. SHP2 expression was upregulated during decidualization. SHP2 inhibitor RMC-4550 and shRNA-mediated SHP2 reduction resulted in a decreased level of phosphorylation of ERK and aberrant cytoplasmic localization of progesterone receptor (PR), coinciding with reduced expression of IGFBP1 and various other target genes of decidualization. Solely inhibiting ERK activity recapitulated these observations. Administration of RMC-4550 led to decidualization deficiency and embryo absorption in mice. Moreover, reduced expression of SHP2 was detected in the decidua of RM patients. Our results revealed that SHP2 is key to PR's nuclear localization, thereby indispensable for decidualization and that reduced expression of SHP2 might be engaged in the pathogenesis of RM.

Free access

CJ Hammer, JS Caton, CR Dahlen, AK Ward, PP Borowicz, and LP Reynolds

In brief

Developmental programming refers to the long-term programming of gene expression during fetal and postnatal development, resulting in altered organ function even into adulthood. This review describes how maternal and paternal sustenance and stress, as well as fetal sex, all matter in large animal models and affect developmental programming of the offspring.

Abstract

Developmental programming is the concept that certain health outcomes throughout life can be linked to early fetal or postnatal development. Progress in understanding concepts and mechanisms surrounding developmental programming is heavily leveraged by the use of large animal models. Numerous large animal models have been developed that apply a host of different maternal stressors and, more recently, paternal stressors. Maternal nutrition is the most researched maternal stressor applied during gestation and includes both global nutrient supply and models that target specific macro- or micro- nutrients. The focus of this review is to provide an overview of the many large animal models of developmental programming and to discuss the importance of sex effects (including paternal contributions) in study design and data interpretation.

Open access

Yanfei Yin, Jiajia Ma, Xiaofang Lu, Saina Yan, Qianqian Jiang, Dazhi Wu, Bin Chen, Bo Weng, and MaoLiang Ran

In brief

The appropriate growth and functions of Sertoli cells are crucial to testis development and spermatogenesis in mammals. This study reveals a novel mechanism of follicle-stimulating hormone in immature porcine Sertoli cell proliferation.

Abstract

Follicle-stimulating hormone (FSH) is a major Sertoli cell mitogen that binds to the FSH receptor. Sertoli cells are indispensable for testis development and spermatogenesis. However, the regulatory mechanisms of FSH in immature Sertoli cell proliferation have not been determined, particularly in domestic animals. In the present study, we identified the regulatory mechanisms of FSH during immature porcine Sertoli cell proliferation. Transcriptome analysis revealed 114 differentially expressed genes that were induced by FSH treatment, which contains 68 upregulated and 46 downregulated genes. These differentially expressed genes were enriched in multiple pathways, including the Ras signaling pathway. Knockdown of the CC-chemokine receptor 7 (CCR7) gene, which was upregulated by FSH, inhibited cell cycle progression by arresting cells in the G1 phase and reduced the cell proliferation and ERK1/2 phosphorylation. In addition, Kobe0065 inhibited Ras signaling in a similar manner as CCR7 knockdown. Furthermore, FSH abolished the effects of Ras signaling pathway inhibition and CCR7 knockdown. Collectively, FSH promotes immature porcine Sertoli cell proliferation by activating the CCR7/Ras-ERK signaling axis. Our results provide novel insights into the regulatory mechanism of FSH in porcine testis development and spermatogenesis by deciding the fate of immature porcine Sertoli cells.

Restricted access

Osvaldo Bogado Pascottini, Stephen J. LeBlanc, Giovanni Gnemi, Jo L M R Leroy, and Geert Opsomer

Up to half of dairy cows may develop one or more types of reproductive tract inflammatory disease within 5 weeks after calving. Clinical endometritis (CE) results from uterine bacterial dysbiosis with increased relative abundance of pathogenic bacteria associated with luminal epithelial damage. These bacteria cause endometrial stromal cell lysis, followed by massive polymorphonuclear neutrophil (PMN) migration, and pyogenesis. Clinical endometritis is defined as endometrial inflammation accompanied by purulent discharge. Purulent discharge is not always accompanied by uterine inflammation (being (rarely) vaginitis or (commonly) cervicitis), hence referred to as purulent vaginal discharge (PVD). Subclinical endometritis (SCE) is an asymptomatic uterine disease defined by a threshold of PMN on cytology that is associated with worse reproductive performance; it has not been linked with bacterial dysbiosis. Current evidence suggests that SCE is a result of metabolic and inflammatory dysfunction that impairs innate immune function and the ability of endometrial PMN to undergo apoptosis, necrosis, and ultimately achieve resolution of inflammation. Clinical endometritis and SCE are diagnosed between 3 and 5 weeks postpartum and commonly overlap, but they are considered distinct manifestations of reproductive tract inflammatory disease. This review addresses the genesis of CE and SCE in postpartum dairy cows considering metabolic stress, innate immune dysfunction, and shifts in the composition of the uterine microbiota.