Browse

You are looking at 81 - 90 of 11,934 items

Open access

Christine Faraci, Sofia Annis, Joyce Jin, Housaiyin Li, Konstantin Khrapko and Dori C Woods

The mtDNA ‘mutator’ mouse, also called the ‘POLG’ mouse, is a well-characterized model frequently used for studies of progeroid aging. Harboring a mutation in the proofreading domain of the mitochondrial polymerase, polymerase-γ (Polg), POLG mice acquire mtDNA mutations at an accelerated rate. This results in premature mitochondrial dysfunction and a systemic aging phenotype. Previous work has demonstrated that the progeroid phenotype in POLG is attenuated following endurance exercise, the only reported intervention to extend health span and lifespan of these mice. Herein, oocyte quality was evaluated in sedentary and exercised POLG mice. In mice homozygous for the Polg mutation, litter size is dramatically reduced as compared to heterozygous Polg mice. Following ovarian hyper-stimulation, oocytes were retrieved until 9 months of age in exercised and sedentary groups, with no oocytes ovulated thereafter. Although ovulated oocyte numbers were not impacted by exercise, we did find a modest improvement in both the ovarian follicle reserve and in oocyte quality based on meiotic spindle assembly, chromosomal segregation and mitochondrial distribution at 7 months of age in exercised POLG mice as compared to sedentary counterparts. Of note, analysis of mtDNA mutational load revealed no differences between exercised and sedentary groups. Collectively, these data indicate that exercise differentially influences somatic tissues of the POLG mouse as compared to oocytes, highlighting important mechanistic differences between mitochondrial regulatory mechanisms in the soma and the germline.

Free access

Sarah-Jayne Mackin, Avinash Thakur and Colum P Walsh

There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field.

Restricted access

Lucía Saucedo, Cristian Sobarzo, Nicolás G Brukman, Héctor A Guidobaldi, Livia Lustig, Laura C Giojalas, Mariano G Buffone, Mónica H Vazquez-Levin and Clara Marín-Briggiler

Fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) have been described in several tissues, where they regulate cellular proliferation, differentiation, motility and apoptosis. Although FGF2/FGFRs expression in the male reproductive tract has been reported, there is scarce evidence on their presence in the female reproductive tract and their involvement in the modulation of sperm function. Therefore, the objective of this study was to determine the expression of FGF2 in the female reproductive tract and to assess the role of the FGF2/FGFRs system in the regulation of sperm physiology using the murine model. FGF2 was detected in uterus and oviduct protein extracts, and it was immunolocalized in epithelial cells of the uterus, isthmus and ampulla, as well as in the cumulus oophorus-oocyte complex. The receptors FGFR1, FGFR2, FGFR3 and FGFR4 were immunodetected in the flagellum and acrosomal region of sperm recovered from the cauda epididymis. Analysis of testis sections showed the expression of FGFRs in germ cells at different stages of the spermatogenesis, suggesting the testicular origin of the sperm FGFRs. Sperm incubation with recombinant FGF2 (rFGF2) led to increased sperm motility and velocity and to enhanced intracellular Ca2+ levels and acrosomal loss compared to the control. In conclusion, this study shows that FGF2 is expressed in tissues of the female reproductive tract. Also, the fact that functional FGFRs are present in mouse sperm and that rFGF2 affects sperm motility and acrosomal exocytosis, suggests the involvement of this system in the in vivo regulation of sperm function.

Free access

Lindsay Ellsworth, Emma Harman, Vasantha Padmanabhan and Brigid Gregg

The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.

Restricted access

Gustavo Marcelo Rindone, Agostina Gorga, Mariana Regueira, Eliana Herminia Pellizzari, Selva Beatriz Cigorraga, María Noel Galardo, Silvina Beatriz Meroni and María Fernanda Riera

Metformin (MET) is one of the most widely used anti-hyperglycemic agents for treating patients with type 2 diabetes and it has started to be used in pediatric population at ages when Sertoli cells are still proliferating. It is well known that follicle-stimulating hormone (FSH) is the major Sertoli cell mitogen. The aim of the study is to investigate a possible effect of MET, which has been shown to have anti-proliferative properties, on FSH regulation of postnatal Sertoli cell proliferation and on the molecular mechanisms involved in this regulation. The present study was performed in eight-day-old rat Sertoli cell cultures. The results obtained show that MET in the presence of FSH increases phosphorylated acetyl-CoA carboxylase and decreases phosphorylated p70S6K levels. Moreover, we show that MET decreases FSH-stimulated Sertoli cell proliferation, and this decrease is accompanied by a reduction in FSH-stimulated Ccnd1 and Ccnd2 expression and an increase in cell cycle inhibitor p21 Cip expression. Altogether, these results suggest that MET can, at least in part, counteract the effect of FSH on postnatal Sertoli cell proliferation.

Restricted access

Jacqueline M Wallace, John S Milne, Raymond P Aitken, Graham W Horgan and Clare L Adam

Low birthweight is a risk factor for later adverse health. Here the impact of placentally mediated prenatal growth restriction followed by postnatal nutrient abundance on growth, glucose metabolism and body composition was assessed in both sexes at key stages from birth to mid-adult life. Singleton-bearing adolescent dams were fed control or high nutrient intakes to induce normal or growth-restricted pregnancies respectively. Restricted lambs had ~40% reduced birthweight. Fractional growth rates were higher in restricted lambs of both sexes predominantly during suckling/juvenile phases. Thereafter, rates and patterns of growth differed by sex. Absolute catch-up was not achieved and restricted offspring had modestly reduced weight and stature at mid-adulthood necropsy (~109 weeks). Dual-energy X-ray absorptiometry revealed lower bone mineral density in restricted vs normal lambs at 11, 41, 64 and 107 weeks, with males > females from 41 weeks onwards. Body fat percentage was higher in females vs males throughout, in restricted vs normal lambs at weaning (both sexes) and in restricted vs normal females at mid-adulthood. Insulin secretion after glucose challenge was greater in restricted vs normal of both sexes at 7 weeks and in restricted males at 32 weeks. In both sexes, fasting glucose concentrations were greater in restricted offspring across the life course, while glucose area under the curve after challenge was higher in restricted offspring at 32, 60, 85 and 106 weeks, indicative of persistent glucose intolerance. Therefore, prenatal growth restriction has negative consequences for body composition and metabolism throughout the life course with the effects modulated by sex differences in postnatal growth rates, fat deposition and bone mass accrual.

Restricted access

Liuhong Yang, Lei Chen, Xiaosheng Lu, Anni Tan, Yao Chen, Yalan Li, Xuemei Peng, Shaochun Yuan, Dongqing Cai and Yanhong Yu

Peri-ovarian adipose tissue (POAT) is a kind of intra-abdominal white adipose tissue that is present surrounding the ovaries in rodents. Recent studies demonstrated that POAT-deficient mice displayed a phenotype of delayed antral follicular development, for which decreases in serum estrogen, serum FSH and FSHR levels were responsible. However, folliculogenesis is regulated by endocrine signals and also modulated by a number of locally produced intraovarian factors whose acts are both autocrine and paracrine. Here, we used a model of surgical removal of POAT unilaterally and contralateral ovaries as controls, as both were under the same endocrine control, to assess the paracrine effect of the POAT on folliculogenesis. Surgical removal of unilateral POAT resulted in delayed antral follicular development and the increased number of atretic follicles, accompanied by decreased levels of intraovarian adipokines and growth factors, lipid accumulation and steroidogenic enzyme expression. POAT-deficient ovaries displayed compensatory increased expressions of intraovarian genes, such as Vegf and Adpn for angiogenesis, Acc, Fasn, and Gapdh involved in lipogenesis and Fshr in response to FSH stimulation. Furthermore, we demonstrated that removal of POAT promoted follicular apoptosis, caused retention of cytoplasmic YAP and inhibited PTEN-AKT-mTOR activation. These alterations were observed only in the POAT-deficient ovaries but not in the contralateral ovaries (with POAT), which suggests that a paracrine interaction between POAT and ovaries is important for normal folliculogenesis.

Restricted access

E Canon, L Jouneau, T Blachère, N Peynot, N Daniel, L Boulanger, L Maulny, C Archilla, S Voisin, A Jouneau, M Godet and V Duranthon

The POU5F1 gene encodes one of the ‘core’ transcription factors necessary to establish and maintain pluripotency in mammals. Its function depends on its precise level of expression, so its transcription has to be tightly regulated. To date, few conserved functional elements have been identified in its 5′ regulatory region: a distal and a proximal enhancer, and a minimal promoter, epigenetic modifications of which interfere with POU5F1 expression and function in in vitro-derived cell lines. Also, its permanent inactivation in differentiated cells depends on de novo methylation of its promoter. However, little is known about the epigenetic regulation of POU5F1 expression in the embryo itself. We used the rabbit blastocyst as a model to analyze the methylation dynamics of the POU5F1 5′ upstream region, relative to its regulated expression in different compartments of the blastocyst over a 2-day period of development. We evidenced progressive methylation of the 5′ regulatory region and the first exon accompanying differentiation and the gradual repression of POU5F1. Methylation started in the early trophectoderm before complete transcriptional inactivation. Interestingly, the distal enhancer, which is known to be active in naïve pluripotent cells only, retained a very low level of methylation in primed pluripotent epiblasts and remained less methylated in differentiated compartments than the proximal enhancer. This detailed study identified CpGs with the greatest variations in methylation, as well as groups of CpGs showing a highly correlated behavior, during differentiation. Moreover, our findings evidenced few CpGs with very specific behavior during this period of development.

Restricted access

María Belén Poretti, Camila Frautschi, Eugenia Luque, Santiago Bianconi, Ana Carolina Martini, Graciela Stutz, Laura Vincenti, Maria Emilia Santillán, Marina Ponzio, Helgi B Schiöth, Marta Fiol de Cuneo and Valeria Paola Carlini

It has been demonstrated that food intake and reproductive physiology are both simultaneously modulated to optimize reproductive success under fluctuating metabolic conditions. Ghrelin (GHRL) is an orexigenic peptide identified as the endogenous ligand of the growth hormone secretagogue receptor that is being investigated for its potential role on reproduction. Considering that data available so far are still limited and characterization of GHRL action mechanism on the reproductive system has not been fully elucidated, we studied the participation of hypothalamus in GHRL effects on sperm functional activity, plasma levels of gonadotropins and histological morphology in mice testes after hypothalamic infusion of 0.3 or 3.0 nmol/day GHRL or artificial cerebrospinal fluid (ACSF) at different treatment periods. We found that GHRL 3.0 nmol/day administration for 42 days significantly reduced sperm concentration (GHRL 3.0 nmol/day = 14.05 ± 2.44 × 106/mL vs ACSF = 20.33 ± 1.35 × 106/mL, P < 0.05) and motility (GHRL 3.0 nmol/day = 59.40 ± 4.20% vs ACSF = 75.80 ± 1.40%, P < 0.05). In addition, histological studies showed a significant decrease percentage of spermatogonia (GHRL 3.0 nmol/day = 6.76 ± 0.68% vs ACSF = 9.56 ± 0.41%, P < 0.05) and sperm (GHRL 3.0 nmol/day = 24.24 ± 1.92% vs ACSF = 31.20 ± 3.06%, P < 0.05). These results were associated with a significant reduction in luteinizing hormone and testosterone plasma levels (P < 0.05). As GHRL is an orexigenic peptide, body weight and food intake were measured. Results showed that GHRL increases both parameters; however, the effect did not last beyond the first week of treatment. Results presented in this work confirm that central GHRL administration impairs spermatogenesis and suggest that this effect is mediated by inhibition of hypothalamic–pituitary–gonadal axis.

Restricted access

Jorge Cerbón, Noemi Baranda-Avila, Alejandro Falcón-Muñoz, Ignacio Camacho-Arroyo and Marco Cerbón

Sphingolipids are involved in the regulation of cell proliferation. It has been reported that diacylglycerol and sphingosine-1-phosphate generation, during the synthesis of phospho-sphingolipids, is necessary for both, G1-S transition of cell cycle during the sustained activation of protein kinase C in various cell models (MDCK, Saccharomyces and Entamoeba) and AKT pathway activation. During the estrous cycle of the rat, AKT signaling is the main pathway involved in the regulation of uterine cell proliferation. The aim of the present study was to investigate the role of sphingolipid synthesis during proliferation of uterine cells in the estrous cycle of the rat. On metestrus day, when both luminal and glandular uterine epithelia present the maximal BrdU-labeled cells (S phase cells), there was an increase in the relative abundance of total sphingomyelins, as compared to estrus day. Myriocin, a sphingolipid synthesis inhibitor administered on estrus day, before the new cell cycle of epithelial cells is initiated, decreased the abundance of sphingomyelin, accompanied by proliferation arrest in uterine epithelial cells on metestrus day. In order to study the sphingolipid signaling pathway affected by myriocin, we evaluated the activation of the PKC-AKT-GSK3b-Cyclin D3 pathway. We observed that total and phosphorylated protein kinase C diminished in uterine epithelial cells of myriocin treated animals. Interestingly, cyclin D3 nuclear localization was blocked by myriocin, concomitantly with a decrease in nuclear pRb expression. In conclusion, we demonstrate that sphingolipid synthesis and signaling are involved in uterine epithelial cell proliferation during the estrous cycle of the rat.