Role of sulphate in development

in Reproduction
Author:
Paul Anthony Dawson Mater Research, Translational Research Institute, Woolloongabba, Queensland 4102, Australia

Search for other papers by Paul Anthony Dawson in
Current site
Google Scholar
PubMed
Close

Free access

Sign up for journal news

Sulphate contributes to numerous processes in mammalian physiology, particularly during development. Sulphotransferases mediate the sulphate conjugation (sulphonation) of numerous compounds, including steroids, glycosaminoglycans, proteins, neurotransmitters and xenobiotics, transforming their biological activities. Importantly, the ratio of sulphonated to unconjugated molecules plays a significant physiological role in many of the molecular events that regulate mammalian growth and development. In humans, the fetus is unable to generate its own sulphate and therefore relies on sulphate being supplied from maternal circulation via the placenta. To meet the gestational needs of the growing fetus, maternal blood sulphate concentrations double from mid-gestation. Maternal hyposulphataemia has been linked to fetal sulphate deficiency and late gestational fetal loss in mice. Disorders of sulphonation have also been linked to a number of developmental disorders in humans, including skeletal dysplasias and premature adrenarche. While recognised as an important nutrient in mammalian physiology, sulphate is largely unappreciated in clinical settings. In part, this may be due to technical challenges in measuring sulphate with standard pathology equipment and hence the limited findings of perturbed sulphate homoeostasis affecting human health. This review article is aimed at highlighting the importance of sulphate in mammalian development, with basic science research being translated through animal models and linkage to human disorders.

Abstract

Sulphate contributes to numerous processes in mammalian physiology, particularly during development. Sulphotransferases mediate the sulphate conjugation (sulphonation) of numerous compounds, including steroids, glycosaminoglycans, proteins, neurotransmitters and xenobiotics, transforming their biological activities. Importantly, the ratio of sulphonated to unconjugated molecules plays a significant physiological role in many of the molecular events that regulate mammalian growth and development. In humans, the fetus is unable to generate its own sulphate and therefore relies on sulphate being supplied from maternal circulation via the placenta. To meet the gestational needs of the growing fetus, maternal blood sulphate concentrations double from mid-gestation. Maternal hyposulphataemia has been linked to fetal sulphate deficiency and late gestational fetal loss in mice. Disorders of sulphonation have also been linked to a number of developmental disorders in humans, including skeletal dysplasias and premature adrenarche. While recognised as an important nutrient in mammalian physiology, sulphate is largely unappreciated in clinical settings. In part, this may be due to technical challenges in measuring sulphate with standard pathology equipment and hence the limited findings of perturbed sulphate homoeostasis affecting human health. This review article is aimed at highlighting the importance of sulphate in mammalian development, with basic science research being translated through animal models and linkage to human disorders.

Introduction

In adults and children, approximately one third of sulphate requirements are obtained from the diet (Appel et al. 2004), although sulphate intake can vary greatly (1.5–16 mmol/day) and is dependent on the source of drinking water (undetectable to >500 mg/l) and types of food consumed (Allen et al. 1989, Florin et al. 1991, 1993). Dietary sulphate is absorbed via the intestinal epithelium into the circulation, where it is maintained at ∼0.3 mM, making sulphate the fourth most abundant anion in human plasma (Murer et al. 1992, Cole & Evrovski 1997). Circulating sulphate levels are maintained by the kidneys, which filter sulphate in the glomerulus and then reabsorb sulphate back into circulation (Ullrich & Murer 1982). The amount of sulphate that is reabsorbed is regulated by sulphate transporter proteins expressed on the plasma membrane of renal epithelial cells.

Sulphate reabsorption occurs in the proximal tubule of the kidney and is mediated by two sulphate transporter proteins, SLC13A1 (aka NaS1, sodium sulphate transporter 1) and SLC26A1 (aka SAT1, sulphate anion transporter 1) (Lee et al. 2005). SLC13A1 is expressed on the apical membrane of epithelial cells in the proximal tubule where it mediates the first step of sulphate reabsorption (Lotscher et al. 1996), and SLC26A1 mediates the second step across the basolateral membrane (Karniski et al. 1998) (Fig. 1A). Mice lacking the Slc13a1 or Slc26a1 genes have sulphate wasting into the urine (hypersulphaturia), which leads to reduced blood sulphate levels (hyposulphataemia) (Dawson et al. 2003, 2010). In addition, genetic defects in the SLC13A1 gene of dogs and sheep also lead to hyposulphataemia (Neff et al. 2012, Zhao et al. 2012). Humans with loss-of-function mutations (R12X and N174S) in the SLC13A1 gene exhibit renal sulphate wasting and hyposulphataemia (Bowling et al. 2012). This loss of sulphate from circulation reduces sulphate availability to cells throughout the body and leads to a reduced intracellular sulphate conjugation (sulphonation) capacity, as shown in the Slc13a1- and Slc26a1-null mice (Dawson et al. 2003, 2010, Lee et al. 2006).

Figure 1
Figure 1

Sufficient intracellular sulphate levels need to be maintained for sulphonation reactions to function effectively. (A) In the kidneys, filtered sulphate is reabsorbed through epithelial cells in the proximal tubule via SLC13A1 on the apical membrane and then by SLC26A1 on the basolateral membrane. (B) Intracellular sulphate is obtained from extracellular sources via sulphate transporters and is derived from the metabolism of methionine and cysteine. Sulphate and ATP are converted to the universal sulphonate donor, PAPS. Both (1) sulphonation and (2) de-sulphonation reactions are active within intracellular metabolism. Sulphonated molecules are transported across the plasma membrane of cells via ATP binding cassette (ABC) proteins, sodium-dependent organic anion transporter (SOAT) and organic anion transporter polypeptides (OATPs), where they provide a circulating reservoir for cellular uptake and intracellular de-sulphonation. R-O-SO3 represents sulphonated substrates, including steroids, neurotransmitters and proteins.

Citation: REPRODUCTION 146, 3; 10.1530/REP-13-0056

Intracellular sulphonation relies on a sufficient supply of sulphate, which is derived from the uptake of sulphate across the plasma membrane via sulphate transporters. The cell also generates sulphate from the intermediary metabolism of thiol compounds, as well as de-conjugation reactions that are mediated by sulphatases (Fig. 1B). While intracellular oxidation of cysteine provides the majority of sulphate requirements for most cell types, some tissues such as the developing liver and skeleton rely more on extracellular sources of sulphate via sulphate transporters (Ito et al. 1982, Humphries et al. 1988). In addition, the placenta and fetus rely on sulphate supplied from the maternal circulation because these tissues have negligible levels of cystathionase and cysteine oxidase, that are important for generating sulphate from the sulphur-containing amino acids (Gaull et al. 1972, Loriette & Chatagner 1978, Dawson 2011). Sulphonation reactions in all organisms require the conversion of sulphate to the universal sulphonate (SO3) donor, 3′-phosphoadenosine 5′-phosphosulphate (PAPS) (Klassen & Boles 1997). PAPS is generated by the cytosolic enzyme, PAPS synthetase, that sulphurylates ATP to form APS followed by phosphorylation to form PAPS (Venkatachalam 2003; Fig. 1B). The sulphonate group from PAPS is then transferred to the target substrate via sulphotransferase enzymes, which can be grouped into two classes: i) cytosolic sulphotransferases that sulphonate neurotransmitters, bile acids, xenobiotics, and steroids and ii) Golgi-located sulphotransferases that have proteoglycan and lipid substrates (Gamage et al. 2006) and rely on PAPS transporters (PAPST1 and PAPST2) to mediate the translocation of PAPS from the cytosol into the Golgi (Sasaki et al. 2009). The landmark report of sulphate activation to PAPS (Lipmann 1958) and the subsequent identification of sulphotransferases (Lipmann 1958, Gamage et al. 2006), as well as the characterisation of mouse models with perturbed sulphate homoeostasis (Bullock et al. 1998, Faiyaz ul Haque et al. 1998, Ringvall et al. 2000, Dawson et al. 2003, 2010, Thiele et al. 2004, Forlino et al. 2005, Tong et al. 2005, de Agostini 2006, Habuchi et al. 2007, Holst et al. 2007, Lum et al. 2007, Settembre et al. 2007), have led to our current understanding of sulphonation and the physiological importance of this process in modulating the biological activity of steroids (Dawson 2012), thyroid hormone (Richard et al. 2001, Wu et al. 2005), glycosaminoglycans and xenobiotics (Lee et al. 2006, Dawson et al. 2010). While the clinical importance of sulphate is currently underappreciated, interest in sulphate and its roles in mammalian reproduction and development has expanded over the past decade.

Sulphate in fertility and maintenance of pregnancy

Several studies have proposed an essential role of sulphate in fertilisation and maintenance of pregnancy. Sulphonation of zona pellucida (ZP) glycoproteins during oocyte maturation contributes to the ZP acquiring the capacity to accept sperm (Lay et al. 2011). In addition, sperm from male mice lacking tyrosylprotein sulphotransferase-2 (Tpst2) have reduced ability to adhere to the egg plasma membrane, leading to male infertility (Borghei et al. 2006). To date, more than 40 tyrosine-sulphonated proteins have been identified in humans and rodents (Stone et al. 2009), including the sperm-expressed MFGE8 protein that lacks tyrosine sulphonation in infertile Tpst2-deficient male mice (Hoffhines et al. 2009). Tyrosine sulphonation of both the luteinizing hormone (LH) receptor and follicle-stimulating hormone (FSH) receptor is required for optimal function of these proteins in reproductive biology (Costagliola et al. 2002, Mi et al. 2002). Furthermore, sulphonated pregnenolone, but not unconjugated pregnenolone, enhances phospholipase A2 activity, which plays an essential role in eicosanoid production and maintenance of uterine function during gestation (Saitoh et al. 1984, Brant et al. 2006). Together, these findings show that sulphate plays numerous important physiological roles in mammalian reproductive biology.

Sulphate supply to the fetus in human and animal gestation

During human and rodent pregnancy, maternal circulating sulphate levels increase approximately twofold, with levels peaking in the second and third trimesters (Tallgren 1980, Morris & Levy 1983, Cole et al. 1984, Dawson et al. 2011). This increase is due to elevated maternal kidney SLC13A1 and SLC26A1 gene expression (Lee et al. 1999, Dawson et al. 2011), which leads to enhanced renal sulphate reabsorption (Cole et al. 1985a) in the pregnant mother (Fig. 2). The increased circulating sulphate level in pregnant humans (from ≈0.26 to 0.59 mM; Cole et al. 1984, 1985b, 1992) and mice (from ≈1.0 to 2.3 mM; Dawson et al. 2011) provides a reservoir of sulphate for the placenta and fetus and is remarkable as most circulating ions usually decrease slightly due to haemodilution (Lind 1980). As the placenta and fetus have a relatively low capacity to generate sulphate from methionine and cysteine (Gaull et al. 1972, Loriette & Chatagner 1978), most of the sulphate in these tissues must come from the maternal circulation (Fig. 2). This is consistent with fetal hyposulphataemia and negligible amniotic fluid sulphate levels in fetuses from pregnant hyposulphataemic Slc13a1-null mice (Dawson et al. 2011). The reduced fecundity of pregnant female Slc13a1-null mice (Dawson et al. 2003) is due to fetal death in mid- and late gestation (from embryonic day 12.5; Dawson et al. 2011), highlighting the importance for maintaining high maternal blood sulphate levels during pregnancy.

Figure 2
Figure 2

Sulphate is supplied from maternal circulation to placental and fetal tissues, where sulphonation reactions are important for normal growth and development. (A) Increased maternal kidney SLC13A1 and SLC26A1 expression from early gestation (in mice from E4.5) enhances renal sulphate reabsorption, leading to (B) a doubling in circulating sulphate concentrations. (C) SLC13A4 expression in syncytiotrophoblasts mediates sulphate transport (ST) for generation of the universal sulphate donor PAPS. (D) Sulphate is supplied to the fetal blood and (E) taken up by fetal cells. *Intracellular generation of sulphate in fetal and placental cells is negligible.

Citation: REPRODUCTION 146, 3; 10.1530/REP-13-0056

Sulphate is supplied from maternal blood to fetal circulation, via placental sulphate transporters. Recently, the relative abundance and cellular expression of all known sulphate transporters in human and mouse placentae were described (Dawson et al. 2012, Simmons et al. 2013). Those studies identified SLC13A4 (aka NaS2) to be the most abundant placental sulphate transporter, which was localised to the syncytiotrophoblasts, where it is proposed to play an essential role in mediating sulphate supply to the placenta and fetus. The proposed roles of both placental SLC13A4 and maternal renal SLC13A1 in meeting the gestational needs of the developing fetus (Fig. 2) warrant future studies of these transporters in pregnant women with perturbed sulphate homoeostasis.

Pathophysiology of perturbed sulphate homoeostasis in human and animal development

Numerous genes involved in maintaining the required biological ratio of sulphonated to unconjugated molecules have been described in humans and animal models (Table 1). Intracellular sulphate and its sulphonate donor PAPS need to be maintained at sufficiently high levels for the sulphonation of xenobiotics, pharmacological drugs, proteoglycans and steroids (Mulder & Jakoby 1990; Fig. 3). Furthermore, the intracellular removal of sulphate from compounds is mediated by a family of 17 sulphatase enzymes (Hanson et al. 2004, Sardiello et al. 2005), and several of these have been linked to syndromes in humans (Table 1).

Table 1

Pathogenetics of perturbed sulphate homoeostasis.

GeneSpecies and phenotype/syndromeReferences
Sulphate transporters
 SLC13A1Human: renal sulphate wasting, hyposulphataemiaBowling et al. (2012)
 Slc13a1Mice: renal sulphate wasting, hyposulphataemia, fetal loss, growth retardation, behavioural abnormalities, altered steroid/lipid profiles impaired gastrointestinal function, drug-induced hepatotoxicityDawson et al. (2003, 2004, 2005, 2006, 2008, 2009, 2011) and Lee et al. (2006, 2007)
 SLC13a1Dog: hyposulphataemia, osteochondrodysplasia, growth retardationNeff et al. (2012)
 SLC13a1Sheep: hyposulphataemia, osteochondrodysplasia, growth retardationZhao et al. (2012)
 Slc26a1Mice: renal sulphate wasting, hyposulphataemia, urolithiasisDawson et al. (2010)
 SLC26A2Human: chondrodysplasias (MED, DTD, AO2, ACG1B)Dawson et al. (2005)
 Slc26a2Mice: chondrodysplasiasForlino et al. (2005)
PAPS synthetase and transporter
 PAPSS2Human: spondyloepimetaphyseal dysplasia, premature pubarcheFaiyaz ul Haque et al. (1998) and Noordam et al. (2009)
 Papss2Mice: brachymorphismFaiyaz ul Haque et al. (1998)
 papst1Zebrafish: cartilage defectsClément et al. (2008)
Sulphotransferases
 Sult1e1Mice: spontaneous fetal lossTong et al. (2005)
 Tst1Mice: fetal loss and reduced body weightOuyang et al. (2002)
 Tpst2Mice: dwarfism and thyroid hypoplasiaSasaki et al. (2007)
 CHST3Human: spondyloepimetaphyseal dysplasiaThiele et al. (2004)
 Hs3t1Mice: reduced fecundity, delayed placental developmentde Agostini (2006)
 Hs2st (Hs2st1)Mice: eye and skeletal defects, kidney agenesis, neonatal deathBullock et al. (1998)
 Hs6st (Hs6st1)Mice: reduced fecundity, perturbed placental developmentHabuchi et al. (2007)
 Ndst1Mice: mammary gland development, reduced fecundity, neonatal deathCrawford et al. (2010) and Ringvall et al. (2000)
Sulphatases
 ARSAHuman: metachromatic leucodystrophyDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 ARSBHuman: Maroteaux–Lamy syndromeDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 ARSCHuman: X-linked ichthyosisDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 ARSEHuman: chondrodysplasia punctata 1Diez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 GALNSHuman: Morquio A syndromeDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 GNSHuman: Sanfilippo D syndromeDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 IDSHuman: Hunter syndromeDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 SGSHHuman: Sanfilippo A syndromeDiez-Roux & Ballabio (2005) and Sardiello et al. (2005)
 SULF1Human: Mesomelia-synostoses syndromeIsidor et al. (2010)
 Sulf1Mouse: reduced growth, skeletal defects, perinatal deathHolst et al. (2007)
 Sulf2Mouse: reduced growth, skeletal defects, perinatal deathHolst et al. (2007) and Lum et al. (2007)
 SUMF1Human: Multiple sulphatase deficienciesCosma et al. (2003)
 Sumf1Mice: growth retardation, skeletal and neurological abnormalities, mortalitySettembre et al. (2007)
Figure 3
Figure 3

Fetal and placental tissues rely on sulphate supply from maternal stores for numerous physiological roles. (A) Kidney sulphate transporters maintain high maternal circulating sulphate levels during pregnancy, which supply a reservoir of sulphate to the fetus via placental sulphate transport. R, includes steroids, proteoglycans, xenobiotics and pharmacological drugs. (B) Sulphate conjugation in fetal and placental tissues plays an important role in bio-transforming numerous endogenous and exogenous molecules.

Citation: REPRODUCTION 146, 3; 10.1530/REP-13-0056

Sulphonation of xenobiotics and pharmacological drugs

In human and animal gestation, the fetus has negligible capacity to detoxify xenobiotics and certain drugs via the glucuronidation pathway (Hines & McCarver 2002, McCarver & Hines 2002). However, the fetal liver expresses abundant levels of sulphotransferases, which are important for the sulphonation and clearance of numerous compounds that are potentially detrimental to fetal development (Stanley et al. 2005, Alnouti & Klaassen 2006). Both the Slc13a1 and Slc26a1 mouse models of hyposulphataemia have a reduced capacity to sulphonate acetaminophen, which leads to enhanced acetaminophen-induced hepatotoxicity (Lee et al. 2006, Dawson et al. 2010). This may be relevant to earlier studies that proposed a potential link between human birth defects and a variable acetaminophen sulphonation capacity of the fetal liver (Adjei et al. 2008). Nonetheless, sulphonation is an important process for the detoxification of xenobiotics and certain drugs in fetal tissues (reviewed in Gamage et al. (2006)).

Sulphonation of proteoglycans

In mammals, sulphonated proteoglycans are an essential component of extracellular matrices throughout the body, particularly in connective tissues (Habuchi et al. 2004, Klüppel 2010). Proteoglycan sulphates are also a major component of the mucous barrier in the respiratory, gastrointestinal and reproductive tracts, where they are proposed to play a role in protecting the underlying epithelium (Nieuw Amerongen et al. 1998, Argüeso & Gipson 2006, Dawson et al. 2009). The sulphate content of proteoglycans influences cell signalling function and the structural integrity of tissues (Mulder & Jakoby 1990). Highly sulphonated glycoproteins, including heparan sulphate proteoglycans (HSPGs), are critical for maintaining developmental cell signalling pathways in Drosophila and Caenorhabditis elegans (Sen et al. 1998, Lin et al. 1999, Dejima et al. 2006) and contribute to tissue remodelling of the reproductive tract during gestation (Yanagishita 1994) and fetal kidney and brain development (Bullock et al. 1998, Yamaguchi 2001). The importance of HSPG sulphonation in mammalian gestation is highlighted by the phenotypes of heparan sulphotransferase knockout (Hs3t1−/−) mice, which exhibit reduced fecundity due to delayed placental development (de Agostini 2006). Sulphate is also important for modulating the physiological roles of chondroitin proteoglycan (CSPG) in numerous developing tissues, with links to modulation of the Indian Hedgehog signalling pathway (Cortes et al. 2009). Importantly, sulphonation of CSPGs in chondrocytes is essential for normal skeletal growth and development, and several chrondrodysplasias have been attributed to genetic defects that lead to decreased CSPG sulphonation capacity (Table 1).

Chondrocytes rely on an abundant supply of extracellular sulphate to meet the intracellular requirements for CSPG sulphonation. Interestingly, defects in the renal SLC13a1 gene of dogs and sheep lead to hyposulphataemia and osteochondrodysplasias (Neff et al. 2012, Zhao et al. 2012), which are most likely to result from a decreased CSPG sulphonation capacity. Sulphate is transported into chondrocytes via the SLC26A2 sulphate transporter (Rossi et al. 1997). Numerous variants in the human SLC26A2 gene have been linked to chondrodysplasias (Dawson & Markovich 2005), with the underlying metabolic defect being reduced sulphonation of proteoglycans in chondrocytes (Cornaglia et al. 2009). Mutant Slc26a2 mice also exhibit chondrodysplasias, which mimic the biochemical and morphological phenotypes found in humans (Hästbacka et al. 1994, Forlino et al. 2005, Cornaglia et al. 2009). Treatment of the mutant Slc26a2 mice with N-acetyl cysteine showed increased proteoglycan sulphonation and improved skeletal phenotypes, suggesting that thiol-containing compounds can bolster the intracellular sulphate levels needed for sulphonation of CSPGs (Pecora et al. 2006).

Loss of PAPS synthetase has also been linked to impaired CSPG sulphonation and skeletal dysplasias (Sugahara & Schwartz 1982). Mammalian genomes contain two PAPS synthetase genes, PAPSS1 and PAPSS2 (Kurima et al. 1998, Xu et al. 2000). However, only PAPSS2 has been linked to human pathophysiology, with similar skeletal phenotypes found in Papss2 mutant mice (Faiyaz ul Haque et al. 1998, Xu et al. 2000). In addition, disruption of the zebrafish PAPS transporter gene (papst1, aka pinscher) leads to cartilage defects (Clément et al. 2008). Skeletal phenotypes are also found in patients with mutations in the chondroitin 6-O-sulphotransferase gene (Thiele et al. 2004; Table 1), showing that proteoglycan sulphonation is important for maintaining healthy bone development.

Sulphonation of steroids

Early studies proposed that steroid sulphates were end products of metabolism, with the sulphate moiety merely increasing the water solubility of the steroid and enhancing its excretion into the urine (Mulder & Jakoby 1990). However, more recent studies have shown steroid sulphates to be important precursors of biologically active steroids or to have physiological roles that are distinct from non-sulphonated steroids (Strott 1996, 2002). Sulphonation is a molecular mechanism for inactivating steroids, as most steroid sulphonates do not bind their target receptor (Strott 1996). Sulphate also plays an important role in the modulation of cholesterol function. In addition to serving as a substrate for adrenal and ovarian steroidogenesis, cholesterol sulphate has been linked to several biological processes, including regulation of cholesterol synthesis, plasmin and thrombin activities, sperm capacitation and activation of protein kinase C (Reed et al. 2005).

When sulphonated, steroids avidly bind to serum proteins, particularly albumin as well as corticosteroid-binding globulin (aka CBG, transcortin) and sex hormone binding globulin (aka SHBG, androgen-binding protein, testosterone-binding β-globulin) (Puche & Nes 1962, Chader et al. 1972, Weiser et al. 1979, Dunn et al. 1981, Strott 1996). Binding of steroid sulphates to serum proteins decreases their urinary clearance by approximately two orders of magnitude, when compared with unconjugated steroids (Wang et al. 1967). This is relevant to circulating steroid sulphate levels being much higher when compared with those of their non-sulphonated forms, as shown for oestrogen sulphate, which has circulating levels several-fold higher than unconjugated oestrogen (Strott 1996, 2002). Circulating albumin-bound steroid sulphates are proposed to provide a pool of inactive steroids, which can be taken up by peripheral target tissues, where de-conjugation via steroid sulphatases generate active steroids.

Synthesised in both maternal and placental tissues, cholesterol sulphate is an essential precursor of steroids for maintaining fetal growth and development. Although fetal steroid biosynthesis is limited, DHEAS is produced in the fetal adrenal gland (zona reticularis) and then circulated to the placenta where it provides the major supply of DHEAS (≈90%) for production of oestrone, oestradiol (E2) and other fetal steroids (Dawson 2011). In addition, DHEAS is also converted to 16α-hydroxy DHEAS in the fetal liver, via 16α-hydroxylase, and subsequently converted to oestriol (>60 mg/day during the third trimester of human gestation) in the placenta. While decreased levels of oestriol in maternal circulation have been used as a marker for certain developmental disorders, including Down syndrome, trisomy 18, idiopathic pregnancy loss and anencephaly (Alldred et al. 2012), the role of perturbed sulphonation of DHEA and oestriol in modifying maternal oestriol levels and potentially human fetal development awaits further investigation.

Disturbances in the balance of sulphonated to unconjugated steroids can have detrimental effects on steroid-responsive events in development (Strott 1996). For example, mid-gestational fetal loss and placental thrombosis have been shown in mice lacking the Sult1e1 oestrogen sulphotransferase gene (Tong et al. 2005). Sult1e1 is highly expressed in the placenta where it is essential for generating oestrone sulphate, E2-3-sulphate and oestriol sulphate.

Perturbed sulphonation capacity, due to inactivating mutations in the PAPSS2 gene, has also been linked to altered endocrine function in humans (Noordam et al. 2009). One XX female patient with premature pubarche had an abnormal endocrine profile with androstenedione and testosterone levels at twofold above the upper limit of normal ranges, a DHEA level at the upper limit of the normal range and DHEAS level at one order of magnitude below the normal range. The clinical presentations of this patient were proposed to be a consequence of reduced DHEA sulphonation, which led to increased circulating levels of unconjugated DHEA that was converted to androgens. More recent studies have shown a trend (P=0.06) for a lower ratio of circulating DHEAS to DHEA, in children with premature adrenarche, and harbouring a polymorphism (rs182420) in the SULT2A1 gene (Utriainen et al. 2012). SULT2A1 genetic variants have also been associated with reduced DHEAS and inherited adrenal androgen excess in some women with polycystic ovary syndrome (Goodarzi et al. 2007). These findings indicate a pathogenetic role of PAPSS2 and SULT2A1 in androgen excess disorders. Together, these studies provide evidence that disruption of steroid sulphonation, including decreased sulphate and PAPS supply, as well as steroid sulphotransferase activity, leads to perturbed endocrine profiles and associated clinical manifestations (Table 1).

Summary

Sulphate is an obligate nutrient for healthy fetal growth and development. The field of sulphate research brings together families of genes that encode sulphate transporters, PAPS synthetases and transporters, sulphotransferases and sulphatases. All these contribute to maintaining the required physiological balance of sulphonated and unconjugated compounds. While the importance of sulphate in human growth and development is largely unappreciated, its significance is being realised with the generation of animal models, as well as links to human pathophysiologies, particularly chondrodysplasias. These findings warrant future studies to further delineate the roles for sulphate in fetal growth and development, as well as to determine its physiological importance in placental development and maternal adaptation to pregnancy, particularly for the role of steroid sulphonation. Future research will be important to further unravel how perturbed sulphonation affects health outcomes for both mother and child.

Declaration of interest

The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review reported.

Funding

The preparation of this manuscript was supported by the Mater Medical Research Institute. P A Dawson is a recipient of a Mater Foundation Fellowship.

References

  • Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM & Leeder JS 2008 Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Research. Part A, Clinical and Molecular Teratology 82 155165. (doi:10.1002/bdra.20535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Agostini A 2006 An unexpected role for anticoagulant heparan sulfate proteoglycans in reproduction. Swiss Medical Weekly 136 583590.

  • Alldred SK, Deeks JJ, Guo B, Neilson JP & Alfirevic Z 2012 Second trimester serum tests for Down's syndrome screening. Cochrane Database of Systematic Reviews 6 CD009925.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Allen HE, Halley-Henderson MA & Hass CN 1989 Chemical composition of bottled mineral water. Archives of Environmental Health 44 102116. (doi:10.1080/00039896.1989.9934383)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alnouti Y & Klaassen CD 2006 Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicological Sciences 93 242255. (doi:10.1093/toxsci/kfl050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Appel LJ, Baker DH, Bar-Or O, Minaker KL, Morris RC, Resnick LM, Sawka MN, Volpe Sl, Weinberger MH & Whelton PK 2004 Sulfate. In Dietary Reference Intakes for Water Potassium, Sodium, Chloride and Sulfate. ch 7, pp 424–443. Washington DC, USA; The National Academies Press

    • PubMed
    • Export Citation
  • Argüeso P & Gipson IK 2006 Quantitative analysis of mucins in mucosal secretions using indirect enzyme-linked immunosorbent assay. Methods in Molecular Biology 347 277288. (doi:10.1385/1-59745-167-3:277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borghei A, Ouyang YB, Westmuckett AD, Marcello MR, Landel CP, Evans JP & Moore KL 2006 Targeted disruption of tyrosylprotein sulfotransferase-2, an enzyme that catalyzes post-translational protein tyrosine O-sulfation, causes male infertility. Journal of Biological Chemistry 281 94239431. (doi:10.1074/jbc.M513768200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bowling FG, Heussler HS, McWhinney A & Dawson PA 2012 Plasma and urinary sulfate determination in a cohort with autism. Biochemical Genetics 51 147153. (doi:10.1007/s10528-012-9550-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brant K, Guan W, Tithof P & Caruso RL 2006 Gestation age-related increase in 50-kDa rat uterine calcium-independent phospholipase A2 expression influences uterine sensitivity to polychlorinated biphenyl stimulation. Biology of Reproduction 74 874880. (doi:10.1095/biolreprod.105.047084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bullock SL, Fletcher JM, Beddington RS & Wilson VA 1998 Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes and Development 12 18941906. (doi:10.1101/gad.12.12.1894)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chader GJ, Rust N, Burton RM & Westphal U 1972 Steroid-protein interactions. XXVI. Studies on the polymeric nature of the corticosteroid-binding globulin of the rabbit. Journal of Biological Chemistry 247 65816588.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clément A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB & Roehl HH 2008 Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genetics 4 e1000136. (doi:10.1371/journal.pgen.1000136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE & Evrovski J 1997 Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. Journal of Chromatography. A 789 221232. (doi:10.1016/S0021-9673(97)00821-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE, Baldwin LS & Stirk LJ 1984 Increased inorganic sulfate in mother and fetus at parturition: evidence for a fetal-to-maternal gradient. American Journal of Obstetrics and Gynecology 148 596599.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE, Baldwin LS & Stirk LJ 1985a Increased renal reabsorption of inorganic sulfate in third-trimester high-risk pregnancies. Obstetrics and Gynecology 66 485490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE, Baldwin LS & Stirk LJ 1985b Increased serum sulfate in pregnancy: relationship to gestational age. Clinical Chemistry 31 866867.

  • Cole DE, Oulton M, Stirk LJ & Magor B 1992 Increased inorganic sulfate concentrations in amniotic fluid. Journal of Perinatal Medicine 20 443447. (doi:10.1515/jpme.1992.20.6.443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cornaglia AI, Casasco A, Casasco M, Riva F & Necchi V 2009 Dysplastic histogenesis of cartilage growth plate by alteration of sulphation pathway: a transgenic model. Connective Tissue Research 50 232242. (doi:10.1080/03008200802684623)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cortes M, Baria AT & Schwartz NB 2009 Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development 136 16971706. (doi:10.1242/dev.030742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G & Ballabio A 2003 The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113 445456. (doi:10.1016/S0092-8674(03)00348-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costagliola S, Panneels V, Bonomi M, Koch J, Many MC, Smits G & Vassart G 2002 Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO Journal 21 504513. (doi:10.1093/emboj/21.4.504)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crawford BE, Garner OB, Bishop JR, Zhang DY, Bush KT, Nigam SK & Esko JD 2010 Loss of the heparan sulfate sulfotransferase, Ndst1, in mammary epithelial cells selectively blocks lobuloalveolar development in mice. PLoS ONE 5 e10691. (doi:10.1371/journal.pone.0010691)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA 2011 Sulfate in fetal development. Seminars in Cell & Developmental Biology 22 653659. (doi:10.1016/j.semcdb.2011.03.004)

  • Dawson PA 2012 The biological roles of steroid sulfonation. In Steroids – From Physiology to Clinical Medicine, pp 45–64. Ed. SM Ostojic. Rijeka: Intech

    • PubMed
    • Export Citation
  • Dawson PA & Markovich D 2005 Pathogenetics of the human SLC26 transporters. Current Medicinal Chemistry 12 385396. (doi:10.2174/0929867053363144)

  • Dawson PA, Beck L & Markovich D 2003 Hyposulfatemia, growth retardation, reduced fertility and seizures in mice lacking a functional NaSi-1 gene. PNAS 100 1370413709. (doi:10.1073/pnas.2231298100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Steane SE & Markovich D 2004 Behavioural abnormalities of the hyposulfataemic Nas1 knock-out mouse. Behavioral Brain Research 154 457463. (doi:10.1016/j.bbr.2004.03.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Steane SE & Markovich D 2005 Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behavioral Brain Research 159 1520. (doi:10.1016/j.bbr.2004.09.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Gardiner B, Grimmond S & Markovich D 2006 Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiological Genomics 26 116124. (doi:10.1152/physiolgenomics.00300.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Gardiner B, Lee S, Grimmond S & Markovich D 2008 Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice,. Journal of Steroid Biochemistry and Molecular Biology 112 5562. (doi:10.1016/j.jsbmb.2008.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Huxley S, Gardiner B, Tran T, McAuley JL, Grimmond S, McGuckin MA & Markovich D 2009 Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58 910919. (doi:10.1136/gut.2007.147595)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA & Markovich D 2010 Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. Journal of Clinical Investigation 120 706712. (doi:10.1172/JCI31474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Sim P, Simmons DG & Markovich D 2011 Fetal loss and hyposulfataemia in pregnant NaS1 transporter null mice. Journal of Reproduction and Development 57 444449. (doi:10.1262/jrd.10-173K)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Rakoczy J & Simmons DG 2012 Placental, renal, and ileal sulfate transporter gene expression in mouse gestation. Biology of Reproduction 87 19. (doi:10.1095/biolreprod.111.098749)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dejima K, Seko A, Yamashita K, Gengyo-Ando K, Mitani S, Izumikawa T, Kitagawa H, Sugahara K, Mizuguchi S & Nomura K 2006 Essential roles of 3′-phosphoadenosine 5′-phosphosulfate synthase in embryonic and larval development of the nematode Caenorhabditis elegans. Journal of Biological Chemistry 281 1143111440. (doi:10.1074/jbc.M601509200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diez-Roux G & Ballabio A 2005 Sulfatases and human disease. Annual Review of Genomics and Human Genetics 6 355379. (doi:10.1146/annurev.genom.6.080604.162334)

  • Dunn JF, Nisula BC & Rodbard D 1981 Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. Journal of Clinical Endocrinology and Metabolism 53 5868. (doi:10.1210/jcem-53-1-58)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H & Ahmad W et al. 1998 Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nature Genetics 20 157162. (doi:10.1038/2458)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Florin T, Neale G, Gibson GR, Christl SU & Cummings JH 1991 Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32 766773. (doi:10.1136/gut.32.7.766)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Florin THJ, Neale G, Goretski S & Cummings JH 1993 The sulfate content of foods and beverages. Journal of Food Composition and Analysis 6 140151. (doi:10.1006/jfca.1993.1016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forlino A, Piazza R, Tiveron C, Della Torre S, Tatangelo L, Bonafè L, Gualeni B, Romano A, Pecora F & Superti-Furga A et al. 2005 A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Human Molecular Genetics 14 859871. (doi:10.1093/hmg/ddi079)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL & McManus ME 2006 Human sulfotransferases and their role in chemical metabolism. Toxicological Sciences 90 522. (doi:10.1093/toxsci/kfj061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gaull G, Sturman JA & Raiha NC 1972 Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatric Research 6 538547. (doi:10.1203/00006450-197206000-00002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goodarzi MO, Antoine HJ & Azziz R 2007 Genes for enzymes regulating dehydroepiandrosterone sulfonation are associated with levels of dehydroepiandrosterone sulfate in polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 92 26592664. (doi:10.1210/jc.2006-2600)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Habuchi H, Habuchi O & Kimata K 2004 Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconjugate Journal 21 4752. (doi:10.1023/B:GLYC.0000043747.87325.5e)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Habuchi H, Nagai N, Sugaya N, Atsumi F, Stevens RL & Kimata K 2007 Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. Journal of Biological Chemistry 282 1557815588. (doi:10.1074/jbc.M607434200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanson SR, Best MD & Wong CH 2004 Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angewandte Chemie International Edition in English 43 57365763. (doi:10.1002/anie.200300632)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B & Weaver A et al. 1994 The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78 10731087. (doi:10.1016/0092-8674(94)90281-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hines RN & McCarver DG 2002 The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. Journal of Pharmacology and Experimental Therapeutics 300 355360. (doi:10.1124/jpet.300.2.355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffhines AJ, Jen CH, Leary JA & Moore KL 2009 Tyrosylprotein sulfotransferase-2 expression is required for sulfation of RNase 9 and Mfge8 in vivo. Journal of Biological Chemistry 284 30963105. (doi:10.1074/jbc.M808434200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M & Bolon B et al. 2007 Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE 2 e575. (doi:10.1371/journal.pone.0000575)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Humphries DE, Silbert CK & Silbert JE 1988 Sulfation by cultured cells. Cysteine, cysteinesulphinic acid and sulphate as sources for proteoglycan sulfate. Biochemical Journal 252 305308.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Isidor B, Pichon O, Redon R, Day-Salvatore D, Hamel A, Siwicka KA, Bitner-Glindzicz M, Heymann D, Kjellén L & Kraus C et al. 2010 Mesomelia-synostoses syndrome results from deletion of SULF1 and SLCO5A1 genes at 8q13. American Journal of Human Genetics 87 95100. (doi:10.1016/j.ajhg.2010.05.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito K, Kimata K, Sobue M & Suzuki S 1982 Altered proteoglycan synthesis by epiphyseal cartilages in culture at low SO4(2−) concentration. Journal of Biological Chemistry 257 917923.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karniski LP, Lötscher M, Fucentese M, Hilfiker H, Biber J & Murer H 1998 Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. American Journal of Physiology 275 F79F87.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klassen CD & Boles J 1997 The importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB Journal 11 404418.

  • Klüppel M 2010 The roles of chondroitin-4-sulfotransferase-1 in development and disease. Progress in Molecular Biology and Translational Science 93 113132. (doi:10.1016/S1877-1173(10)93006-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger RC Jr, Deyrup A & Schwartz NB 1998 A member of a family of sulfate-activating enzymes causes murine brachymorphism. PNAS 95 86818685. (doi:10.1073/pnas.95.15.8681)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lay KM, Oshiro R, Arasaki C, Ashizawa K & Tatemoto H 2011 Role of acidification elicited by sialylation and sulfation of zona glycoproteins during oocyte maturation in porcine sperm–zona pellucida interactions. Journal of Reproduction and Development 57 744751. (doi:10.1262/jrd.11-057H)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee HJ, Balasubramanian SV & Morris ME 1999 Effect of pregnancy, postnatal growth, and gender on renal sulfate transport. Proceedings of the Society for Experimental Biology and Medicine 221 336344. (doi:10.1046/j.1525-1373.1999.d01-90.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee A, Dawson PA & Markovich D 2005 NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. International Journal of Biochemistry & Cell Biology 37 13501356. (doi:10.1016/j.biocel.2005.02.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee S, Dawson PA, Hewavitharana AK, Shaw PN & Markovich D 2006 Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology 43 12411247. (doi:10.1002/hep.21207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee S, Kesby JP, Muslim MD, Steane SE, Eyles DW, Dawson PA & Markovich D 2007 Hyperserotonaemia and reduced brain serotonin levels in NaS1 sulphate transporter null mice. Neuroreport 18 19811985. (doi:10.1097/WNR.0b013e3282f22998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin X, Buff EM, Perrimon N & Michelson AM 1999 Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126 37153723.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lind T 1980 Clinical chemistry of pregnancy. Advances in Clinical Chemistry 21 124. (doi:10.1016/S0065-2423(08)60085-2)

  • Lipmann F 1958 Biological sulfate activation and transfer. Science 128 575580. (doi:10.1126/science.128.3324.575)

  • Loriette C & Chatagner F 1978 Cysteine oxidase and cysteine sulfinic acid decarboxylase in developing rat liver. Experientia 34 981982. (doi:10.1007/BF01915299)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lotscher M, Custer M, Quabius ES, Kaissling B, Murer H & Biber J 1996 Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflügers Archiv: European Journal of Physiology 432 373378. (doi:10.1007/s004240050147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lum DH, Tan J, Rosen SD & Werb Z 2007 Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Molecular and Cellular Biology 27 678688. (doi:10.1128/MCB.01279-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCarver DG & Hines RN 2002 The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. Journal of Pharmacology and Experimental Therapeutics 300 361366. (doi:10.1124/jpet.300.2.361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mi Y, Shapiro SD & Baenziger JU 2002 Regulation of lutropin circulatory half-life by the mannose/N-acetylgalactosamine-4-SO4 receptor is critical for implantation in vivo. Journal of Clinical Investigation 109 269276. (doi:10.1172/JCI0213997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morris ME & Levy G 1983 Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clinical Pharmacology and Therapeutics 33 529536. (doi:10.1038/clpt.1983.72)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulder GJ & Jakoby WB 1990 Sulfation. In Conjugation Reactions in Drug Metabolism: an Integrated Approach: Substrates, Co-substrates, Enzymes and their Interactions In Vivo and In Vitro, pp 107–161. Ed. GJ Mulder. London: Taylor and Francis

    • PubMed
    • Export Citation
  • Murer H, Manganel M & Roch-Ramel F 1992 Tubular transport of monocarboxylates, Krebs cycle intermediates and inorganic sulphate. In Handbook of Physiology, pp 21652188. Ed. Winhager E. London: Oxford University Press..doi:10.1002/cphy.cp080247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Neff MW, Beck JS, Koeman JM, Boguslawski E, Kefene L, Borgman A & Ruhe AL 2012 Partial deletion of the sulfate transporter SLC13A1 is associated with an osteochondrodysplasia in the miniature poodle breed. PLoS ONE 7 e51917. (doi:10.1371/journal.pone.0051917)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nieuw Amerongen AV, Bolscher JG, Bloemena E & Veerman EC 1998 Sulfomucins in the human body. Biological Chemistry 379 118. (doi:10.1515/bchm.1998.379.1.1)

  • Noordam C, Dhir V, McNelis JC, Schlereth F, Hanley NA, Krone N, Smeitink JA, Smeets R, Sweep FC & Claahsen-van der Grinten HL et al. 2009 Inactivating PAPSS2 mutations in a patient with premature pubarche. New England Journal of Medicine 360 23102318. (doi:10.1056/NEJMoa0810489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ouyang YB, Crawley JT, Aston CE & Moore KL 2002 Reduced body weight and increased postimplantation fetal death in tyrosylprotein sulfotransferase-1-deficient mice. Journal of Biological Chemistry 277 2378123787. (doi:10.1074/jbc.M202420200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pecora F, Gualeni B, Forlino A, Superti-Furga A, Tenni R, Cetta G & Rossi A 2006 In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation. Biochemical Journal 398 509514. (doi:10.1042/BJ20060566)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puche RC & Nes WR 1962 Binding of dehydroepiandrosterone sulfate to serum albumin. Endocrinology 70 857863. (doi:10.1210/endo-70-6-857)

  • Reed MJ, Purohit A, Woo LW, Newman SP & Potter BV 2005 Steroid sulfatase: molecular biology, regulation, and inhibition. Endocrine Reviews 26 171202. (doi:10.1210/er.2004-0003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ & Coughtrie MW 2001 Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. Journal of Clinical Endocrinology and Metabolism 86 27342742. (doi:10.1210/jc.86.6.2734)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L & Forsberg E 2000 Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. Journal of Biological Chemistry 275 2592625930. (doi:10.1074/jbc.C000359200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rossi A, Bonaventure J, Delezoide AL, Superti-Furga A & Cetta G 1997 Undersulfation of cartilage proteoglycans ex vivo and increased contribution of amino acid sulfur to sulfation in vitro in McAlister dysplasia/atelosteogenesis type 2. European Journal of Biochemistry 248 741747. (doi:10.1111/j.1432-1033.1997.t01-1-00741.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saitoh H, Hirato K, Tahara R, Ogawa K, Noguchi Y, Yanaihara T & Nakayama T 1984 Enhancement of human amniotic phospholipase A2 activity by steroid-sulphate derived from the foeto-placental unit. Acta Endocrinologica 107 420424. (doi:10.1530/acta.0.1070420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sardiello M, Annunziata I, Roma G & Ballabio A 2005 Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Human Molecular Genetics 14 32033217. (doi:10.1093/hmg/ddi351)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki N, Hosoda Y, Nagata A, Ding M, Cheng JM, Miyamoto T, Okano S, Asano A, Miyoshi I & Agui T 2007 A mutation in Tpst2 encoding tyrosylprotein sulfotransferase causes dwarfism associated with hypothyroidism. Molecular Endocrinology 21 17131721. (doi:10.1210/me.2007-0040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y & Nishihara S 2009 The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS ONE 4 e8262. (doi:10.1371/journal.pone.0008262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sen J, Goltz JS, Stevens L & Stein D 1998 Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal–ventral polarity. Cell 95 471481. (doi:10.1016/S0092-8674(00)81615-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Settembre C, Annunziata I, Spampanato C, Zarcone D, Cobellis G, Nusco E, Zito E, Tacchetti C, Cosma MP & Ballabio A 2007 Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. PNAS 104 45064511. (doi:10.1073/pnas.0700382104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simmons DG, Rakoczy J, Jefferis J, Lourie R, McIntyre HD & Dawson PA 2013 Human placental sulfate transporter mRNA profiling identifies abundant SLC13A4 in syncytiotrophoblasts and SLC26A2 in cytotrophoblasts. Placenta 34 381384. (doi:10.1016/j.placenta.2013.01.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanley EL, Hume R & Coughtrie MW 2005 Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Molecular and Cellular Endocrinology 240 3242. (doi:10.1016/j.mce.2005.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stone MJ, Chuang S, Hou X, Shoham M & Zhu JZ 2009 Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. Nature Biotechnology 25 299317. (doi:10.1016/j.nbt.2009.03.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strott CA 1996 Steroid sulfotransferases. Endocrine Reviews 17 670697. (doi:10.1210/edrv-17-6-670)

  • Strott CA 2002 Sulfonation and molecular action. Endocrine Reviews 23 703732. (doi:10.1210/er.2001-0040)

  • Sugahara K & Schwartz NB 1982 Defect in 3′-phosphoadenosine 5′-phosphosulfate synthesis in brachymorphic mice. I. Characterization of the defect. Archives of Biochemistry and Biophysics 214 589601. (doi:10.1016/0003-9861(82)90064-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tallgren LG 1980 Inorganic sulphate in relation to the serum thyroxine level and in renal failure. Acta Medica Scandinavica. Supplementum 640 1100.

  • Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A, Höhne W, Ritter H, Leschik G, Nürnberg P & Mundlos S 2004 Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. PNAS 101 1015510160. (doi:10.1073/pnas.0400334101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tong MH, Jiang H, Liu P, Lawson JA, Brass LF & Song WC 2005 Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase-deficient mice. Nature Medicine 11 153159. (doi:10.1038/nm1184)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ullrich KJ & Murer H 1982 Sulphate and phosphate transport in the renal proximal tubule. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 299 549558. (doi:10.1098/rstb.1982.0151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Utriainen P, Laakso S, Jääskeläinen J & Voutilainen R 2012 Polymorphisms of POR, SULT2A1 and HSD11B1 in children with premature adrenarche. Metabolism 61 12151219. (doi:10.1016/j.metabol.2012.02.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Venkatachalam KV 2003 Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55 111. (doi:10.1080/1521654031000072148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang DY, Bulbrook RD, Ellis F & Coombs MM 1967 Metabolic clearance rates of pregnenolone, 17-acetoxypregnenolone and their sulphate esters in man and in rabbit. Journal of Endocrinology 39 395403. (doi:10.1677/joe.0.0390395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weiser JN, Do YS & Feldman D 1979 Synthesis and secretion of corticosteroid-binding globulin by rat liver. A source of heterogeneity of hepatic corticosteroid-binders. Journal of Clinical Investigation 63 461467. (doi:10.1172/JCI109323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu SY, Green WL, Huang WS, Hays MT & Chopra IJ 2005 Alternate pathways of thyroid hormone metabolism. Thyroid 15 943958. (doi:10.1089/thy.2005.15.943)

  • Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim U-J, Xu J-P & Siciliano MJ et al. 2000 Human 3′-phosphoadenosine 5′-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization. Biochemical and Biophysical Research Communications 268 437444. (doi:10.1006/bbrc.2000.2123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamaguchi Y 2001 Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis. Seminars in Cell & Developmental Biology 12 99106. (doi:10.1006/scdb.2000.0238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yanagishita M 1994 Proteoglycans and hyaluronan in female reproductive organs. EXS 70 179190.

  • Zhao X, Onteru SK, Piripi S, Thompson KG, Blair HT, Garrick DJ & Rothschild MF 2012 In a shake of a lamb's tail: using genomics to unravel a cause of chondrodysplasia in Texel sheep. Animal Genetics 43 918. (doi:10.1111/j.1365-2052.2011.02304.x)

    • PubMed
    • Search Google Scholar
    • Export Citation

 

  • Collapse
  • Expand
  • Sufficient intracellular sulphate levels need to be maintained for sulphonation reactions to function effectively. (A) In the kidneys, filtered sulphate is reabsorbed through epithelial cells in the proximal tubule via SLC13A1 on the apical membrane and then by SLC26A1 on the basolateral membrane. (B) Intracellular sulphate is obtained from extracellular sources via sulphate transporters and is derived from the metabolism of methionine and cysteine. Sulphate and ATP are converted to the universal sulphonate donor, PAPS. Both (1) sulphonation and (2) de-sulphonation reactions are active within intracellular metabolism. Sulphonated molecules are transported across the plasma membrane of cells via ATP binding cassette (ABC) proteins, sodium-dependent organic anion transporter (SOAT) and organic anion transporter polypeptides (OATPs), where they provide a circulating reservoir for cellular uptake and intracellular de-sulphonation. R-O-SO3 represents sulphonated substrates, including steroids, neurotransmitters and proteins.

  • Sulphate is supplied from maternal circulation to placental and fetal tissues, where sulphonation reactions are important for normal growth and development. (A) Increased maternal kidney SLC13A1 and SLC26A1 expression from early gestation (in mice from E4.5) enhances renal sulphate reabsorption, leading to (B) a doubling in circulating sulphate concentrations. (C) SLC13A4 expression in syncytiotrophoblasts mediates sulphate transport (ST) for generation of the universal sulphate donor PAPS. (D) Sulphate is supplied to the fetal blood and (E) taken up by fetal cells. *Intracellular generation of sulphate in fetal and placental cells is negligible.

  • Fetal and placental tissues rely on sulphate supply from maternal stores for numerous physiological roles. (A) Kidney sulphate transporters maintain high maternal circulating sulphate levels during pregnancy, which supply a reservoir of sulphate to the fetus via placental sulphate transport. R, includes steroids, proteoglycans, xenobiotics and pharmacological drugs. (B) Sulphate conjugation in fetal and placental tissues plays an important role in bio-transforming numerous endogenous and exogenous molecules.

  • Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM & Leeder JS 2008 Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Research. Part A, Clinical and Molecular Teratology 82 155165. (doi:10.1002/bdra.20535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Agostini A 2006 An unexpected role for anticoagulant heparan sulfate proteoglycans in reproduction. Swiss Medical Weekly 136 583590.

  • Alldred SK, Deeks JJ, Guo B, Neilson JP & Alfirevic Z 2012 Second trimester serum tests for Down's syndrome screening. Cochrane Database of Systematic Reviews 6 CD009925.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Allen HE, Halley-Henderson MA & Hass CN 1989 Chemical composition of bottled mineral water. Archives of Environmental Health 44 102116. (doi:10.1080/00039896.1989.9934383)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alnouti Y & Klaassen CD 2006 Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicological Sciences 93 242255. (doi:10.1093/toxsci/kfl050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Appel LJ, Baker DH, Bar-Or O, Minaker KL, Morris RC, Resnick LM, Sawka MN, Volpe Sl, Weinberger MH & Whelton PK 2004 Sulfate. In Dietary Reference Intakes for Water Potassium, Sodium, Chloride and Sulfate. ch 7, pp 424–443. Washington DC, USA; The National Academies Press

    • PubMed
    • Export Citation
  • Argüeso P & Gipson IK 2006 Quantitative analysis of mucins in mucosal secretions using indirect enzyme-linked immunosorbent assay. Methods in Molecular Biology 347 277288. (doi:10.1385/1-59745-167-3:277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borghei A, Ouyang YB, Westmuckett AD, Marcello MR, Landel CP, Evans JP & Moore KL 2006 Targeted disruption of tyrosylprotein sulfotransferase-2, an enzyme that catalyzes post-translational protein tyrosine O-sulfation, causes male infertility. Journal of Biological Chemistry 281 94239431. (doi:10.1074/jbc.M513768200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bowling FG, Heussler HS, McWhinney A & Dawson PA 2012 Plasma and urinary sulfate determination in a cohort with autism. Biochemical Genetics 51 147153. (doi:10.1007/s10528-012-9550-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brant K, Guan W, Tithof P & Caruso RL 2006 Gestation age-related increase in 50-kDa rat uterine calcium-independent phospholipase A2 expression influences uterine sensitivity to polychlorinated biphenyl stimulation. Biology of Reproduction 74 874880. (doi:10.1095/biolreprod.105.047084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bullock SL, Fletcher JM, Beddington RS & Wilson VA 1998 Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes and Development 12 18941906. (doi:10.1101/gad.12.12.1894)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chader GJ, Rust N, Burton RM & Westphal U 1972 Steroid-protein interactions. XXVI. Studies on the polymeric nature of the corticosteroid-binding globulin of the rabbit. Journal of Biological Chemistry 247 65816588.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clément A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB & Roehl HH 2008 Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genetics 4 e1000136. (doi:10.1371/journal.pgen.1000136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE & Evrovski J 1997 Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. Journal of Chromatography. A 789 221232. (doi:10.1016/S0021-9673(97)00821-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE, Baldwin LS & Stirk LJ 1984 Increased inorganic sulfate in mother and fetus at parturition: evidence for a fetal-to-maternal gradient. American Journal of Obstetrics and Gynecology 148 596599.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE, Baldwin LS & Stirk LJ 1985a Increased renal reabsorption of inorganic sulfate in third-trimester high-risk pregnancies. Obstetrics and Gynecology 66 485490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole DE, Baldwin LS & Stirk LJ 1985b Increased serum sulfate in pregnancy: relationship to gestational age. Clinical Chemistry 31 866867.

  • Cole DE, Oulton M, Stirk LJ & Magor B 1992 Increased inorganic sulfate concentrations in amniotic fluid. Journal of Perinatal Medicine 20 443447. (doi:10.1515/jpme.1992.20.6.443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cornaglia AI, Casasco A, Casasco M, Riva F & Necchi V 2009 Dysplastic histogenesis of cartilage growth plate by alteration of sulphation pathway: a transgenic model. Connective Tissue Research 50 232242. (doi:10.1080/03008200802684623)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cortes M, Baria AT & Schwartz NB 2009 Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development 136 16971706. (doi:10.1242/dev.030742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G & Ballabio A 2003 The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113 445456. (doi:10.1016/S0092-8674(03)00348-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costagliola S, Panneels V, Bonomi M, Koch J, Many MC, Smits G & Vassart G 2002 Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO Journal 21 504513. (doi:10.1093/emboj/21.4.504)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crawford BE, Garner OB, Bishop JR, Zhang DY, Bush KT, Nigam SK & Esko JD 2010 Loss of the heparan sulfate sulfotransferase, Ndst1, in mammary epithelial cells selectively blocks lobuloalveolar development in mice. PLoS ONE 5 e10691. (doi:10.1371/journal.pone.0010691)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA 2011 Sulfate in fetal development. Seminars in Cell & Developmental Biology 22 653659. (doi:10.1016/j.semcdb.2011.03.004)

  • Dawson PA 2012 The biological roles of steroid sulfonation. In Steroids – From Physiology to Clinical Medicine, pp 45–64. Ed. SM Ostojic. Rijeka: Intech

    • PubMed
    • Export Citation
  • Dawson PA & Markovich D 2005 Pathogenetics of the human SLC26 transporters. Current Medicinal Chemistry 12 385396. (doi:10.2174/0929867053363144)

  • Dawson PA, Beck L & Markovich D 2003 Hyposulfatemia, growth retardation, reduced fertility and seizures in mice lacking a functional NaSi-1 gene. PNAS 100 1370413709. (doi:10.1073/pnas.2231298100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Steane SE & Markovich D 2004 Behavioural abnormalities of the hyposulfataemic Nas1 knock-out mouse. Behavioral Brain Research 154 457463. (doi:10.1016/j.bbr.2004.03.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Steane SE & Markovich D 2005 Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behavioral Brain Research 159 1520. (doi:10.1016/j.bbr.2004.09.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Gardiner B, Grimmond S & Markovich D 2006 Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiological Genomics 26 116124. (doi:10.1152/physiolgenomics.00300.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Gardiner B, Lee S, Grimmond S & Markovich D 2008 Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice,. Journal of Steroid Biochemistry and Molecular Biology 112 5562. (doi:10.1016/j.jsbmb.2008.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Huxley S, Gardiner B, Tran T, McAuley JL, Grimmond S, McGuckin MA & Markovich D 2009 Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58 910919. (doi:10.1136/gut.2007.147595)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA & Markovich D 2010 Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. Journal of Clinical Investigation 120 706712. (doi:10.1172/JCI31474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Sim P, Simmons DG & Markovich D 2011 Fetal loss and hyposulfataemia in pregnant NaS1 transporter null mice. Journal of Reproduction and Development 57 444449. (doi:10.1262/jrd.10-173K)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson PA, Rakoczy J & Simmons DG 2012 Placental, renal, and ileal sulfate transporter gene expression in mouse gestation. Biology of Reproduction 87 19. (doi:10.1095/biolreprod.111.098749)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dejima K, Seko A, Yamashita K, Gengyo-Ando K, Mitani S, Izumikawa T, Kitagawa H, Sugahara K, Mizuguchi S & Nomura K 2006 Essential roles of 3′-phosphoadenosine 5′-phosphosulfate synthase in embryonic and larval development of the nematode Caenorhabditis elegans. Journal of Biological Chemistry 281 1143111440. (doi:10.1074/jbc.M601509200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diez-Roux G & Ballabio A 2005 Sulfatases and human disease. Annual Review of Genomics and Human Genetics 6 355379. (doi:10.1146/annurev.genom.6.080604.162334)

  • Dunn JF, Nisula BC & Rodbard D 1981 Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. Journal of Clinical Endocrinology and Metabolism 53 5868. (doi:10.1210/jcem-53-1-58)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H & Ahmad W et al. 1998 Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nature Genetics 20 157162. (doi:10.1038/2458)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Florin T, Neale G, Gibson GR, Christl SU & Cummings JH 1991 Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32 766773. (doi:10.1136/gut.32.7.766)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Florin THJ, Neale G, Goretski S & Cummings JH 1993 The sulfate content of foods and beverages. Journal of Food Composition and Analysis 6 140151. (doi:10.1006/jfca.1993.1016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forlino A, Piazza R, Tiveron C, Della Torre S, Tatangelo L, Bonafè L, Gualeni B, Romano A, Pecora F & Superti-Furga A et al. 2005 A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Human Molecular Genetics 14 859871. (doi:10.1093/hmg/ddi079)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL & McManus ME 2006 Human sulfotransferases and their role in chemical metabolism. Toxicological Sciences 90 522. (doi:10.1093/toxsci/kfj061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gaull G, Sturman JA & Raiha NC 1972 Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatric Research 6 538547. (doi:10.1203/00006450-197206000-00002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goodarzi MO, Antoine HJ & Azziz R 2007 Genes for enzymes regulating dehydroepiandrosterone sulfonation are associated with levels of dehydroepiandrosterone sulfate in polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 92 26592664. (doi:10.1210/jc.2006-2600)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Habuchi H, Habuchi O & Kimata K 2004 Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconjugate Journal 21 4752. (doi:10.1023/B:GLYC.0000043747.87325.5e)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Habuchi H, Nagai N, Sugaya N, Atsumi F, Stevens RL & Kimata K 2007 Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. Journal of Biological Chemistry 282 1557815588. (doi:10.1074/jbc.M607434200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanson SR, Best MD & Wong CH 2004 Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angewandte Chemie International Edition in English 43 57365763. (doi:10.1002/anie.200300632)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B & Weaver A et al. 1994 The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78 10731087. (doi:10.1016/0092-8674(94)90281-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hines RN & McCarver DG 2002 The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. Journal of Pharmacology and Experimental Therapeutics 300 355360. (doi:10.1124/jpet.300.2.355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffhines AJ, Jen CH, Leary JA & Moore KL 2009 Tyrosylprotein sulfotransferase-2 expression is required for sulfation of RNase 9 and Mfge8 in vivo. Journal of Biological Chemistry 284 30963105. (doi:10.1074/jbc.M808434200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M & Bolon B et al. 2007 Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE 2 e575. (doi:10.1371/journal.pone.0000575)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Humphries DE, Silbert CK & Silbert JE 1988 Sulfation by cultured cells. Cysteine, cysteinesulphinic acid and sulphate as sources for proteoglycan sulfate. Biochemical Journal 252 305308.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Isidor B, Pichon O, Redon R, Day-Salvatore D, Hamel A, Siwicka KA, Bitner-Glindzicz M, Heymann D, Kjellén L & Kraus C et al. 2010 Mesomelia-synostoses syndrome results from deletion of SULF1 and SLCO5A1 genes at 8q13. American Journal of Human Genetics 87 95100. (doi:10.1016/j.ajhg.2010.05.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito K, Kimata K, Sobue M & Suzuki S 1982 Altered proteoglycan synthesis by epiphyseal cartilages in culture at low SO4(2−) concentration. Journal of Biological Chemistry 257 917923.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karniski LP, Lötscher M, Fucentese M, Hilfiker H, Biber J & Murer H 1998 Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. American Journal of Physiology 275 F79F87.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klassen CD & Boles J 1997 The importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB Journal 11 404418.

  • Klüppel M 2010 The roles of chondroitin-4-sulfotransferase-1 in development and disease. Progress in Molecular Biology and Translational Science 93 113132. (doi:10.1016/S1877-1173(10)93006-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger RC Jr, Deyrup A & Schwartz NB 1998 A member of a family of sulfate-activating enzymes causes murine brachymorphism. PNAS 95 86818685. (doi:10.1073/pnas.95.15.8681)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lay KM, Oshiro R, Arasaki C, Ashizawa K & Tatemoto H 2011 Role of acidification elicited by sialylation and sulfation of zona glycoproteins during oocyte maturation in porcine sperm–zona pellucida interactions. Journal of Reproduction and Development 57 744751. (doi:10.1262/jrd.11-057H)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee HJ, Balasubramanian SV & Morris ME 1999 Effect of pregnancy, postnatal growth, and gender on renal sulfate transport. Proceedings of the Society for Experimental Biology and Medicine 221 336344. (doi:10.1046/j.1525-1373.1999.d01-90.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee A, Dawson PA & Markovich D 2005 NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. International Journal of Biochemistry & Cell Biology 37 13501356. (doi:10.1016/j.biocel.2005.02.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee S, Dawson PA, Hewavitharana AK, Shaw PN & Markovich D 2006 Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology 43 12411247. (doi:10.1002/hep.21207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee S, Kesby JP, Muslim MD, Steane SE, Eyles DW, Dawson PA & Markovich D 2007 Hyperserotonaemia and reduced brain serotonin levels in NaS1 sulphate transporter null mice. Neuroreport 18 19811985. (doi:10.1097/WNR.0b013e3282f22998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin X, Buff EM, Perrimon N & Michelson AM 1999 Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126 37153723.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lind T 1980 Clinical chemistry of pregnancy. Advances in Clinical Chemistry 21 124. (doi:10.1016/S0065-2423(08)60085-2)

  • Lipmann F 1958 Biological sulfate activation and transfer. Science 128 575580. (doi:10.1126/science.128.3324.575)

  • Loriette C & Chatagner F 1978 Cysteine oxidase and cysteine sulfinic acid decarboxylase in developing rat liver. Experientia 34 981982. (doi:10.1007/BF01915299)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lotscher M, Custer M, Quabius ES, Kaissling B, Murer H & Biber J 1996 Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflügers Archiv: European Journal of Physiology 432 373378. (doi:10.1007/s004240050147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lum DH, Tan J, Rosen SD & Werb Z 2007 Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Molecular and Cellular Biology 27 678688. (doi:10.1128/MCB.01279-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCarver DG & Hines RN 2002 The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. Journal of Pharmacology and Experimental Therapeutics 300 361366. (doi:10.1124/jpet.300.2.361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mi Y, Shapiro SD & Baenziger JU 2002 Regulation of lutropin circulatory half-life by the mannose/N-acetylgalactosamine-4-SO4 receptor is critical for implantation in vivo. Journal of Clinical Investigation 109 269276. (doi:10.1172/JCI0213997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morris ME & Levy G 1983 Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clinical Pharmacology and Therapeutics 33 529536. (doi:10.1038/clpt.1983.72)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulder GJ & Jakoby WB 1990 Sulfation. In Conjugation Reactions in Drug Metabolism: an Integrated Approach: Substrates, Co-substrates, Enzymes and their Interactions In Vivo and In Vitro, pp 107–161. Ed. GJ Mulder. London: Taylor and Francis

    • PubMed
    • Export Citation
  • Murer H, Manganel M & Roch-Ramel F 1992 Tubular transport of monocarboxylates, Krebs cycle intermediates and inorganic sulphate. In Handbook of Physiology, pp 21652188. Ed. Winhager E. London: Oxford University Press..doi:10.1002/cphy.cp080247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Neff MW, Beck JS, Koeman JM, Boguslawski E, Kefene L, Borgman A & Ruhe AL 2012 Partial deletion of the sulfate transporter SLC13A1 is associated with an osteochondrodysplasia in the miniature poodle breed. PLoS ONE 7 e51917. (doi:10.1371/journal.pone.0051917)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nieuw Amerongen AV, Bolscher JG, Bloemena E & Veerman EC 1998 Sulfomucins in the human body. Biological Chemistry 379 118. (doi:10.1515/bchm.1998.379.1.1)

  • Noordam C, Dhir V, McNelis JC, Schlereth F, Hanley NA, Krone N, Smeitink JA, Smeets R, Sweep FC & Claahsen-van der Grinten HL et al. 2009 Inactivating PAPSS2 mutations in a patient with premature pubarche. New England Journal of Medicine 360 23102318. (doi:10.1056/NEJMoa0810489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ouyang YB, Crawley JT, Aston CE & Moore KL 2002 Reduced body weight and increased postimplantation fetal death in tyrosylprotein sulfotransferase-1-deficient mice. Journal of Biological Chemistry 277 2378123787. (doi:10.1074/jbc.M202420200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pecora F, Gualeni B, Forlino A, Superti-Furga A, Tenni R, Cetta G & Rossi A 2006 In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation. Biochemical Journal 398 509514. (doi:10.1042/BJ20060566)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puche RC & Nes WR 1962 Binding of dehydroepiandrosterone sulfate to serum albumin. Endocrinology 70 857863. (doi:10.1210/endo-70-6-857)

  • Reed MJ, Purohit A, Woo LW, Newman SP & Potter BV 2005 Steroid sulfatase: molecular biology, regulation, and inhibition. Endocrine Reviews 26 171202. (doi:10.1210/er.2004-0003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ & Coughtrie MW 2001 Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. Journal of Clinical Endocrinology and Metabolism 86 27342742. (doi:10.1210/jc.86.6.2734)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L & Forsberg E 2000 Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. Journal of Biological Chemistry 275 2592625930. (doi:10.1074/jbc.C000359200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rossi A, Bonaventure J, Delezoide AL, Superti-Furga A & Cetta G 1997 Undersulfation of cartilage proteoglycans ex vivo and increased contribution of amino acid sulfur to sulfation in vitro in McAlister dysplasia/atelosteogenesis type 2. European Journal of Biochemistry 248 741747. (doi:10.1111/j.1432-1033.1997.t01-1-00741.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saitoh H, Hirato K, Tahara R, Ogawa K, Noguchi Y, Yanaihara T & Nakayama T 1984 Enhancement of human amniotic phospholipase A2 activity by steroid-sulphate derived from the foeto-placental unit. Acta Endocrinologica 107 420424. (doi:10.1530/acta.0.1070420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sardiello M, Annunziata I, Roma G & Ballabio A 2005 Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Human Molecular Genetics 14 32033217. (doi:10.1093/hmg/ddi351)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki N, Hosoda Y, Nagata A, Ding M, Cheng JM, Miyamoto T, Okano S, Asano A, Miyoshi I & Agui T 2007 A mutation in Tpst2 encoding tyrosylprotein sulfotransferase causes dwarfism associated with hypothyroidism. Molecular Endocrinology 21 17131721. (doi:10.1210/me.2007-0040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y & Nishihara S 2009 The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS ONE 4 e8262. (doi:10.1371/journal.pone.0008262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sen J, Goltz JS, Stevens L & Stein D 1998 Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal–ventral polarity. Cell 95 471481. (doi:10.1016/S0092-8674(00)81615-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Settembre C, Annunziata I, Spampanato C, Zarcone D, Cobellis G, Nusco E, Zito E, Tacchetti C, Cosma MP & Ballabio A 2007 Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. PNAS 104 45064511. (doi:10.1073/pnas.0700382104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simmons DG, Rakoczy J, Jefferis J, Lourie R, McIntyre HD & Dawson PA 2013 Human placental sulfate transporter mRNA profiling identifies abundant SLC13A4 in syncytiotrophoblasts and SLC26A2 in cytotrophoblasts. Placenta 34 381384. (doi:10.1016/j.placenta.2013.01.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanley EL, Hume R & Coughtrie MW 2005 Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Molecular and Cellular Endocrinology 240 3242. (doi:10.1016/j.mce.2005.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stone MJ, Chuang S, Hou X, Shoham M & Zhu JZ 2009 Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. Nature Biotechnology 25 299317. (doi:10.1016/j.nbt.2009.03.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strott CA 1996 Steroid sulfotransferases. Endocrine Reviews 17 670697. (doi:10.1210/edrv-17-6-670)

  • Strott CA 2002 Sulfonation and molecular action. Endocrine Reviews 23 703732. (doi:10.1210/er.2001-0040)

  • Sugahara K & Schwartz NB 1982 Defect in 3′-phosphoadenosine 5′-phosphosulfate synthesis in brachymorphic mice. I. Characterization of the defect. Archives of Biochemistry and Biophysics 214 589601. (doi:10.1016/0003-9861(82)90064-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tallgren LG 1980 Inorganic sulphate in relation to the serum thyroxine level and in renal failure. Acta Medica Scandinavica. Supplementum 640 1100.

  • Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A, Höhne W, Ritter H, Leschik G, Nürnberg P & Mundlos S 2004 Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. PNAS 101 1015510160. (doi:10.1073/pnas.0400334101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tong MH, Jiang H, Liu P, Lawson JA, Brass LF & Song WC 2005 Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase-deficient mice. Nature Medicine 11 153159. (doi:10.1038/nm1184)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ullrich KJ & Murer H 1982 Sulphate and phosphate transport in the renal proximal tubule. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 299 549558. (doi:10.1098/rstb.1982.0151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Utriainen P, Laakso S, Jääskeläinen J & Voutilainen R 2012 Polymorphisms of POR, SULT2A1 and HSD11B1 in children with premature adrenarche. Metabolism 61 12151219. (doi:10.1016/j.metabol.2012.02.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Venkatachalam KV 2003 Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55 111. (doi:10.1080/1521654031000072148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang DY, Bulbrook RD, Ellis F & Coombs MM 1967 Metabolic clearance rates of pregnenolone, 17-acetoxypregnenolone and their sulphate esters in man and in rabbit. Journal of Endocrinology 39 395403. (doi:10.1677/joe.0.0390395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weiser JN, Do YS & Feldman D 1979 Synthesis and secretion of corticosteroid-binding globulin by rat liver. A source of heterogeneity of hepatic corticosteroid-binders. Journal of Clinical Investigation 63 461467. (doi:10.1172/JCI109323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu SY, Green WL, Huang WS, Hays MT & Chopra IJ 2005 Alternate pathways of thyroid hormone metabolism. Thyroid 15 943958. (doi:10.1089/thy.2005.15.943)

  • Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim U-J, Xu J-P & Siciliano MJ et al. 2000 Human 3′-phosphoadenosine 5′-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization. Biochemical and Biophysical Research Communications 268 437444. (doi:10.1006/bbrc.2000.2123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamaguchi Y 2001 Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis. Seminars in Cell & Developmental Biology 12 99106. (doi:10.1006/scdb.2000.0238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yanagishita M 1994 Proteoglycans and hyaluronan in female reproductive organs. EXS 70 179190.

  • Zhao X, Onteru SK, Piripi S, Thompson KG, Blair HT, Garrick DJ & Rothschild MF 2012 In a shake of a lamb's tail: using genomics to unravel a cause of chondrodysplasia in Texel sheep. Animal Genetics 43 918. (doi:10.1111/j.1365-2052.2011.02304.x)

    • PubMed
    • Search Google Scholar
    • Export Citation