Blastocoel cavity formation by preimplantation rat embryos in the presence of cyanide and other inhibitors of oxidative phosphorylation

D. R. Brison* and H. J. Leese

Department of Biology, University of York, Heslington, York YO1 5DD, UK

The role of oxidative phosphorylation in blastocoel development in rats was determined by culturing morula stage embryos for 24 h in the presence of three inhibitors of ATP generation: cyanide, antimycin-A and 2,4-dinitrophenol (DNP). Rat morulae could form blastocysts in concentrations of cyanide that are toxic to the embryos of other mammals. Similar results were obtained with antimycin-A and DNP, although DNP reduced the number of blastocysts that formed. A non-invasive ultrasensitive assay was used on single blastocysts and the glycolytic pathway was shown to be stimulated in the presence of these inhibitors. These results suggest that, uniquely among preimplantation embryos studied, the developing rat blastocyst does not have an absolute requirement for oxidative phosphorylation but may be able to compensate by increasing the amount of glucose consumed and metabolized by glycolysis. This pattern of metabolism may be related to the changing maternal environment during development, with blastocoel cavity formation and implantation taking place in increasingly anoxic conditions.

Introduction

The preimplantation period of development in the rat lasts for 5 days after fertilization; during this time the embryo is a free-living structure with a high requirement for energy, particularly during the critical differentiative event of blastocoel cavity formation (Leese, 1991). The embryos of the most widely studied species, the mouse, are thought to generate ATP during the preimplantation period via two major metabolic pathways: the oxidation of substrates via the tricarboxylic acid (TCA) cycle/oxidative phosphorylation, and the breakdown of glucose via glycolysis to lactate (Brinster, 1967a; Wales, 1969; Biggers and Stern, 1973; Leese, 1991). In mouse blastocysts freshly flushed from the reproductive tract, only 33–44% of the glucose consumed is accounted for by lactate production (Gardner and Leese, 1990; Gardner and Sakas, 1993). As the yields of ATP from oxidative phosphorylation and glycolysis are, respectively, 38 and 2 molecules per molecule of glucose, it may be concluded that in the preimplantation mouse embryo, as in most adult mammalian cells, ATP generation from oxidative phosphorylation is quantitatively much more significant than that from glycolysis. Mouse embryos, in common with most mammalian cells, are therefore highly sensitive to inhibitors of oxidative phosphorylation such as cyanide (Thomson, 1967).

However, there is evidence that developing rat blastocysts may exhibit a different pattern of energy metabolism, as they convert glucose quantitatively to lactate (Brison and Leese, 1991), and do not oxidize significant amounts of glucose via the TCA cycle (Dufrasnes et al., 1993). The question therefore arises as to what extent rat embryos depend on oxidative phosphorylation to generate the ATP required for development. We have addressed this question by examining the effect of inhibitors of oxidative phosphorylation on blastocyst formation and metabolism.

Materials and Methods

Embryo generation and culture

Rat embryos were generated and cultured as described by Brison and Leese (1991, 1993). Immature (28–30 days old) random-bred female rats of the Wistar strain were given single injections of non-supervulatory doses of 5 IU pregnant mares’ serum gonadotrophin (PMSG; Folligon; Intervet, Cambridge, UK), followed 45–50 h later by 5 IU hCG (Chorulon; Intervet) to synchronize the timing of ovulation. They were immediately placed singly with males overnight to mate. Female mice, 6–8 weeks of age, of the inbred strain CBA/Ca x C57BL/6 were superovulated with 5 IU PMSG, followed 48 h later by 5 IU hCG and also mated singly with males.

Rat embryos were recovered at the two- to four-cell or morula stage by flushing the oviducts with H6, a Hephos-buffered T6 medium (Wood and Whittingham, 1981), on day 2 or mid-day 4 after mating, respectively. Blastocysts were recovered by flushing the uterus on day 5. Embryos were cultured in a modification of T6 medium (Wood and Whittingham, 1981; Brison and Leese, 1991) containing 1.0 mmol glucose 1−1, 2.0 mmol (D+L) lactate 1−1 and 0.25 mmol pyruvate 1−1, adjusted to an osmolality of

*Present address and correspondence: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018. USA. Received 27 September 1993.

© 1994 Journals of Reproduction and Fertility Ltd

Downloaded from Bioscientifica.com at 06/07/2022 05:36:28PM via free access
258 ± 4 mosmol kg⁻¹, and supplemented with 1 g polyvinyl alcohol 1⁻¹. Mouse morulae were recovered from the oviducts on day 3, and cultured in a modified medium M16 (Whittington, 1971) supplemented with 4 g BSA 1⁻¹ (ICN Immunobiologicals, High Wycombe, Bucks). Embryos of both species were cultured in 20 µl drops of medium under light paraffin oil (BDH, Poole, Dorset) at 37°C in a humidified atmosphere of 5% CO₂ in air.

Oxidative phosphorylation inhibitors

All three oxidative phosphorylation inhibitors were prepared on the day of the experiment as 10 × stock solutions in T6, and serially diluted in 20 µl culture drops of T6 pre-equilibrated overnight. Cyanide was dissolved in T6 at a concentration of 10 mmol 1⁻¹. Antimycin-A was initially dissolved in ethanol, diluted with medium T6 to a concentration of 20 mg 1⁻¹, and sonicated to yield a clear solution. The maximum final concentration of ethanol was 0.02%. 2,4-Dinitrophenol (DNP) was dissolved in T6 at a concentration of 10 mmol 1⁻¹, and sonicated. None of the inhibitor concentrations used altered the osmolarity or pH of the medium significantly. Control drops of T6 were treated by adding an equivalent amount of T6 medium, containing ethanol if appropriate.

Fresh stocks of inhibitors were used for each replicate of each experiment. Two sources of cyanide, NaCN and KCN, were used, with identical results, and two sources of Antimycin-A (Sigma A-2006 and A-8674), also with identical results.

Morphological assessment

Morulae were cultured for 24 h from day 4 to day 5 after fertilization in the absence or presence of the inhibitors. At the end of this period they were scored as compacting morulae, early blastocysts (if the blastocoel cavity was less than fully formed), and blastocysts (if they were fully expanded). The total numbers of cells of blastocysts were determined using the polynucleotide-specific fluorochrome bis-benzamide to label cell nuclei (Handyside and Hunter, 1984). Embryos were classed as morphologically normal if, in the case of blastocysts, they remained fully expanded, or in the case of morula and earlier cleavage stages, if the cytoplasm was clear and cell membranes intact. Embryos were scored as degenerate if the blastocysts collapsed, or if blastomeres showed disrupted cell membranes and dark, condensed cytoplasm.

Non-invasive assays

Glucose consumption and lactate production by the same embryo were measured non-invasively using the ultramicrofluorometric technique described previously (Leese and Barton 1984; Gardner and Leese, 1990; Brison and Leese, 1991). Day 5 blastocysts, of a similar size and degree of expansion, freshly flushed from the uterus, were incubated individually for 2 h in 48.1 µl drops of T6 ± KCN or DNP. The microdrops were stored under paraffin oil at ~20°C until analysis. Glucose consumption and lactate production were determined for each blastocyst by comparing their concentrations in the spent microdrops to those in non-embryo containing control drops in the same dish. The inhibitors used did not affect the assays and in any case were included in the control drops for each series.

Expression of results and statistical analysis

The development of morulae in culture was expressed as the percentage reaching each developmental stage. Differences between treatments were tested for statistical significance by χ² analysis. Differences in blastocyst cell numbers and glucose consumption/lactate production were tested for significance by Student’s t test.

Results

Embryo culture experiments

The role of oxidative phosphorylation in blastocoeel development in rats was determined by culturing embryos from the morula stage in various concentrations of three known inhibitors of oxidative phosphorylation: cyanide, antimycin-A and 2,4-dinitrophenol (Slater, 1963, 1967). Each culture experiment was carried out between three and five times, and similar results were obtained for each replicate, which were then pooled. Cyanide had no significant effect on the proportions of morulae reaching each developmental stage (Table 1 and Fig. 1) and the blastocysts that formed were of normal morphology. Cyanide (1.0 mmol 1⁻¹) caused a slight reduction in the number of cells, suggesting a minor effect on cell division (Table 1). Antimycin-A had no significant effect on development, and no effect on final blastocyst cell number, in a concentration range that inhibits respiration in rabbit blastocysts (Benos and Balaban, 1983) and cultured cells (Gauthier et al., 1990). No effect on development was seen in concentrations up to 0.1 mmol DNP 1⁻¹, which effectively uncouple electron transport from ATP production in rabbit blastocysts (Benos and Balaban, 1980) and other cells (Slater, 1963). However, in 1.0 mmol DNP 1⁻¹, development was reduced, although 38% of morulae still formed blastocysts, which contained fewer cells than did control blastocysts (Table 1). In addition, freshly flushed day 5 blastocysts were cultured overnight in the maximum concentrations of all three inhibitors, and remained fully expanded for at least 24 h (data not shown).

In view of the above results, additional controls were performed to ensure that the inhibitors could block oxidative phosphorylation in preimplantation embryos. Mouse embryos cultured from the morula stage in 1.0 mmol KCN 1⁻¹, taken from the same source and prepared in the same manner as for rat morulae, were completely degenerate after 24 h. In control medium, 100% of mouse morulae formed normal blastocysts (data not shown). All three inhibitors were also tested for their effect on earlier cleavage (two–four-cell) stage rat embryos. In the presence of the maximum concentrations of cyanide, antimycin-A and DNP, the majority of the two- and four-cell embryos degenerated completely within 12–16 h, whereas in
Table 1. Effects of inhibitors of oxidative phosphorylation on the formation of rat blastocysts in culture

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Concentration</th>
<th>Number of morulae</th>
<th>Percentage forming blastocysts</th>
<th>Blastocyst cell number<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanide</td>
<td>0<sup>a</sup></td>
<td>54</td>
<td>76%</td>
<td>35.6 ± 1.0 (17)</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>29</td>
<td>69%</td>
<td>36.8 ± 1.2 (8)</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>30</td>
<td>73%</td>
<td>34.9 ± 1.0 (9)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>53</td>
<td>62%</td>
<td>31.3 ± 1.2 (14)<sup>d</sup></td>
</tr>
<tr>
<td>Antimycin-A</td>
<td>0<sup>b</sup></td>
<td>49</td>
<td>69%</td>
<td>37.7 ± 1.7 (22)</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>20</td>
<td>80%</td>
<td>40.8 ± 2.0 (10)</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>22</td>
<td>73%</td>
<td>38.3 ± 2.3 (9)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>36</td>
<td>72%</td>
<td>35.9 ± 1.5 (17)</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>0<sup>a</sup></td>
<td>47</td>
<td>72%</td>
<td>36.4 ± 0.9 (14)</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>27</td>
<td>59%</td>
<td>36.1 ± 1.5 (15)</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>34</td>
<td>74%</td>
<td>34.6 ± 2.1 (11)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>47</td>
<td>38%<sup>e</sup></td>
<td>23.9 ± 0.9 (9)<sup>f</sup></td>
</tr>
</tbody>
</table>

Concentration in mmol l⁻¹; mg l⁻¹.^a

^{*Expressed as mean ± SEM (number of blastocysts). Significantly different from control, *P < 0.05; **P < 0.001.}

control T6, all the embryos had normal morphology for 36 h in culture, often undergoing one cleavage division (data not shown).

Glucose consumption and lactate production

The mechanism by which the rat embryo could form a blastocoe1 in the presence of inhibitors of oxidative phosphorylation was investigated by examining the effect of cyanide and DNP on the glycolytic capacity of the embryo (Fig. 2). Single, freshly flushed day 5 blastocysts cultured for 2 h in T6 consumed large amounts of glucose (34.2 ± 1.0 pmol per embryo per 2 h), nearly all of which was accountable for by lactate production (67.0 ± 2.0 pmol per embryo per 2 h) into the medium, indicating a substantial capacity for glycolysis, as reported by Brison and Leese (1991). However, at concentrations of 1.0 mmol l⁻¹, both cyanide and DNP significantly (P < 0.001) stimulated glucose consumption and lactate production above this already high basal level, by approximately 30%. DNP (0.1 mmol l⁻¹) also caused a significant (P < 0.01), stimulation (about 10–15%) of both glucose consumption and lactate production. The percentage of glucose consumption

Fig. 1. The percentage of rat morulae reaching each developmental stage (□ morula, □ early blastocyst, □ expanded blastocyst), after 24 h culture in control medium (0) and various concentrations of cyanide. Each culture experiment was carried out between three and five times, and similar results were obtained for each replicate, which were then pooled. There were no significant differences in the proportion of embryos developing in the different concentrations of cyanide.

Fig. 2. Glucose uptake (■) and lactate production (□) by single rat blastocysts cultured in control medium (T6 (CON)), 1 mmol potassium cyanide l⁻¹ (KCN (1.0)), and 0.1 and 1.0 mmol 2,4-dinitrophenol l⁻¹ (DNP (0.1) and DNP (1.0), respectively). Each bar represents the mean ± SEM of 18 measurements on 18 blastocysts. Experiments were carried out three times, with six blastocysts per experiment. Differences between control and experimental values were tested for statistical significance using Student’s t test, and indicated: **P < 0.01, ***P < 0.001. The figures over the bars represent the percentage of glucose consumption accountable for by lactate production.**
accountable for by lactate production was consistently close
to 100%, as observed by Brison and Leese (1991).

Discussion

These results provide strong evidence that oxidative phos-
phorylation is not obligatory for blastocyst formation in rats.
Large numbers of blastocysts with normal morphology formed
in concentrations of inhibitors that are completely toxic to
mouse embryos, and to earlier cleavage stage rat embryos. This
is a striking finding, since the transition from morula to
blastocyst is a time of high ATP requirement, primarily due to
the functioning of the Na\(^+\)–K\(^+\)–ATPase, which actively trans-
ports Na\(^+\) ions and is implicated in blastocoel cavity formation
(Biggers et al., 1988; Leese, 1991). Mouse and rabbit embryos
are known to depend on oxidative phosphorylation, as cyanide
and DNP are both highly toxic to their development. Thomson
(1967) found that two-cell mouse embryos degenerated com-
pletely in the presence of 1.0 mmol cyanide \(l^{-1}\), and in
0.1 mmol \(l^{-1}\) formed fewer blastocysts than did controls;
1.0 mmol cyanide \(l^{-1}\) also caused 100% of expanded blasto-
cysts to collapse completely, whereas a less marked effect was
seen at a concentration of 0.1 mmol \(l^{-1}\). DNP caused degen-
eration of two-cell embryos at concentrations of 0.1 mmol \(l^{-1}\)
and above, and when added at 1.0 mmol \(l^{-1}\) to expanded
blastocysts caused almost all of them to collapse. Kane and
Buckley (1977) found similar effects on one-cell rabbit embryos:
0.1 and 1.0 mmol cyanide \(l^{-1}\), and 1.0 mmol DNP \(l^{-1}\) com-
pletely inhibited growth to blastocysts. 0.1 mmol DNP \(l^{-1}\)
also caused a significant reduction in the rate of development.

Thus, sensitivity to inhibitors of oxidative phosphorylation
seems to be specific both to species and developmental stage.
Mouse embryos are sensitive throughout the preimplantation
period, whereas rat embryos are sensitive only at the earlier
stages, becoming much less so during blastocyst formation and
expansion. This may be explained in terms of the consumption
of exogenous energy substrates. Mouse embryos at early
cleavage stages take up little glucose, but large amounts of
exogenous pyruvate, which is oxidized via the TCA cycle and
oxidative phosphorylation (Brinster, 1967b; Leese and Barton,
1984). The pattern is reversed with development, such that
blastocysts take up very little pyruvate, but large amounts of
glucose (Leese and Barton, 1984). This switch in substrate
preference also occurs in the rat embryo, although cleavage
stages before the eight-cell stage were not studied (Brison and
Leese, 1991). This finding suggests that oxidative phos-
phorylation is important early in preimplantation development, in
both mice and rats, and this is confirmed by the observation
that inhibitors of oxidative phosphorylation are toxic to early
mouse (Thomson, 1967) and rat (the present study) embryos.
However, by the time of blastocoel cavity formation, while
the mouse embryo is still absolutely dependent on oxidative phos-
phorylation, the rat embryo is much less so. This is
presumably a result of the ability of the rat embryo to consume
much greater amounts of exogenous glucose than does the
mouse embryo, even though the embryos are of similar size,
and to produce much greater quantities of lactate from the
glucose consumed (Brison and Leese, 1991). The capacity of
the rat embryo to generate ATP via glycolysis during blasto-
coe1 cavity formation is therefore much greater than that of the
mouse embryo.

This hypothesis is further substantiated by the finding that
cyanide and DNP both stimulate the glycolytic capacity of
the rat blastocyst. This suggests a possible adaptive mechanism
by which the rat embryo might compensate for the loss of ATP
via oxidative phosphorylation, i.e. by increasing the rate of
glycolysis. The results reported here do not completely pre-
clude a role for oxidative phosphorylation during normal
blastocoe1 cavity formation, but suggest that the embryo is
flexible with respect to energy generating pathways and can
adapt to changes in its environment.

The changes in the maternal environment experienced by
the rat embryo during preimplantation development correlate
well with this pattern of energy metabolism. The earlier
cleavage stages, up until that of the morula on mid-day 4,
take place in the relatively aerobic environment of the
oviduct (Leese, 1986; Fischer and Bavister, 1993). This phase
is characterized by a high rate of embryonic pyruvate consump-
tion (Brison and Leese, 1991) and a reliance on
oxidative phosphorylation. The enzyme lactate dehydro-
genase (LDH), which catalyses the interconversion of lactate
and pyruvate, is expressed as its aerobic-type isoenzyme
LDH-I at this stage of development (Brinster, 1979; Leese,
1991). During the morula to blastocyst transition, the
embryo passes into the uterus, where the endometrial layers
are closely apposed and the volume of uterine fluid is
minimal (Enders and Schlafke, 1967; Leese, 1989). The oxy-
gen tension in the uterine lumen may be reduced during the
peri-implantation period (Fischer and Bavister, 1993), and
during subsequent implantation, the uterine decidual zone in
the rat is devoid of capillaries (Krehbiel, 1937; Rogers and
Gannon, 1981), and presumably anoxic (Leese, 1989). The
pattern of LDH expression switches to the anaerobic iso-
enzyme LDH-5 in the implanting blastocyst (Brinster, 1979;
Leese, 1991). This second phase of preimplantation develop-
ment is characterized by a low rate of pyruvate consumption,
a high rate of glucose consumption and glycolysis (Brison
and Leese, 1991), and a potential independence from oxy-
dative phosphorylation. This pattern persists through the
immediate postimplantation stages (Clough and Whittingham,
1983; Ellington, 1987) until the maternal circulation to the
embryo is established.

Data from this and previous studies indicate that there are
species differences in the pattern of energy metabolism during
preimplantation development. This work has important impli-
cations for our understanding of early human development,
as preimplantation human embryos consume glucose in similar
amounts (on a per volume basis) to rat embryos, and have a
similarly high capacity for lactate production (Gott et al.,
1990; Leese et al., 1993).

This work was supported by a post-doctoral fellowship from the

References

Benos DJ and Balaban RS (1980) Energy requirements of the developing
mammalian blastocyst for active ion transport Biology of Reproduction 23
941–947
Benos DJ and Balaban RS (1983) Energy metabolism of preimplantation mammalian blastocysts American Journal of Physiology 245 C40–C45

Biggers JD and Stern S (1973) Metabolism of the preimplantation mammalian embryo Advances in Reproductive Physiology 6 1–59

Biggers JD, Bell JE and Benos DJ (1988) Mammalian blastocyst transport functions in a developing epithelium American Journal of Physiology 255 C419–C432

Brinster RL (1967a) Carbon dioxide production from glucose by the preimplantation mouse embryo Experimental Cell Research 47 271–277

Brinster RL (1967b) Carbon dioxide production from lactate and pyruvate by the preimplantation mouse embryo Experimental Cell Research 47 634–637

Brinster RL (1979) Isozymic analyses of early mammalian embryogenesis Isozymes: Current Topics in Biological and Medical Research 3 155–184

Kane MT and Buckley NJ (1977) The effects of inhibitors of energy metabolism on the growth of one-cell rabbit ova to blastocysts in vitro Journal of Reproduction and Fertility 49 261–266

Krebschel RH (1937) Cytological studies of the deciduative reaction in the rat during early pregnancy and in the production of deciduous Physiological Zoology 10 212–234

Leese HJ (1991) Metabolism of the preimplantation mammalian embryo Oxford Reviews of Reproductive Biology 13 35–72

Wales RG (1969) Accumulation of carboxylic acids from glucose by the preimplantation mouse embryo Australian Journal of Biological Sciences 22 701–707
