Binding of pig sperm receptor in the zona pellucida to the boar sperm acrosome

N. Yonezawa¹, Y. Hatanaka², H. Takeyama¹ and M. Nakano¹,²

¹Department of Chemistry, Faculty of Science, and ²Graduate School of Science and Technology, Chiba University, 1–33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263, Japan

Pig zona pellucida (ZP) contains three families of glycoproteins: PZP2, PZP3α and PZP3β. PZP3α mediates the binding of the ZP to spermatozoa. In this study, the binding site of pig ZP on boar spermatozoa and the zona-binding proteins of boar spermatozoa were studied using chemically modified zona glycoproteins or anti-pig ZP antisera. Endo-β-galactosidase-digested PZP3α (EßG-PZP3α), which is deficient in sulfated N-acetyllactosamine, as well as solubilized ZP, bound to the acrosomal region of acrosome-damaged or partially acrosome-reacted spermatozoa. However, they did not bind to acrosome-intact or fully acrosome-reacted spermatozoa. Solubilized ZP did bind to the acrosomal cap released upon acrosome reaction. In western blot analyses, EßG-PZP3α bound to the sperm proteins with molecular masses similar to proacrosin–acrosin and the binding was inhibited by fucoidan and anti-pig acrosin antisera. These results suggest that the binding site of solubilized pig ZP and EßG-PZP3α on spermatozoa is located mainly in the acrosomal matrix and on the membranous compartments in the acrosome and suggest that EßG-PZP3α binds to proacrosin–acrosin. The binding of EßG-PZP3α to proacrosin–acrosin may be involved in the binding of the ZP to the acrosome of partially acrosome-reacted spermatozoa.

Introduction

The zona pellucida (ZP) surrounding mammalian oocytes plays an important role in species-specific recognition between gametes. Pig ZP components can be separated by gel filtration column chromatography into two main fractions of molecular mass 90 kDa and 55 kDa, PZP2 and PZP3, respectively (Nakano et al., 1987). PZP2 is cleaved into 25 kDa and 65 kDa fragments at a specific site upon fertilization (Hatanaka et al., 1992), but its function in gamete recognition has not been determined. PZP3 displays sperm receptor activity and consists of two distinct polypeptides, PZP3α and PZP3β (Hedrick and Wardrip, 1987; Yurewicz et al., 1987). Heterogeneities of PZP3 in charge and size are due to the presence of sulfated N-acetyllactosamine repeats in acidic N- and O-linked oligosaccharides. Separation of PZP3α and PZP3β is successful only after removal of sulfated N-acetyllactosamine by digestion with endo-β-galactosidase (Yurewicz et al., 1987). Therefore, in this study the purified PZP3α and PZP3β following endo-β-galactosidase digestion are referred to as endo-β-galactosidase-digested PZP3α (EßG-PZP3α) and endo-β-galactosidase-digested PZP3β (EßG-PZP3β), respectively. Among the endo-β-galactosidase-digested zona components, only EßG-PZP3α inhibits sperm–zona binding in a competition assay in vitro (Sacco et al., 1989). Although the partial amino acid sequences of EßG-PZP3β reported by Yurewicz et al. (1987, 1992) are very similar to the sequence of the mouse sperm receptor ZP3, EßG-PZP3β does not display sperm receptor activity.

The acrosomal status of spermatozoa that bind to ZP varies according to species. Acrosome-reacted spermatozoa bind to ZP in guinea-pigs (Yanagimachi, 1981), whereas in mice and humans, acrosome-intact spermatozoa bind to ZP, which then induces the acrosome reaction (Wassarman, 1988; Liu and Baker, 1990). In pigs the acrosomal status of spermatozoa that bind to the ZP has not been clarified. Solubilized pig ZP has also been reported to induce acrosome reaction in ejaculated spermatozoa, but the increase in the percentage of acrosome-reacted spermatozoa is small (Berger et al., 1989). Jones et al. (1988) hypothesized that in pigs, partially acrosome-reacted spermatozoa bind firmly to the ZP and then undergo acrosome reaction. Thus, the mechanisms of sperm–zona binding and initiation of acrosome reaction may vary according to species.

In this study, we investigated the binding site of pig ZP on spermatozoa and the sperm proteins that bind to EßG-PZP3α, which is deficient in sulfated N-acetyllactosamin.

Materials and Methods

Purification of zona glycoproteins

Pig ZP was isolated from ovaries and then solubilized at 70°C for 30 min in distilled water as described by Nakano et al. (1990). Solubilized ZP was digested with endo-β-galactosidase (Seikagaku Corp., Tokyo) as described by Yurewicz et al. (1987)
Fig. 1. Purification of glycoproteins from pig zona pellucida (ZP). Solubilized pig ZP was digested with endo-ß-galactosidase and then fractionated on reverse-phase HPLC. (a) Elution profile of endo-ß-galactosidase-digested PZP3β (EßG-PZP3β) (peak 1), EßG-PZP3α (peak 2) and EßG-PZP2 (peak 3). Dashed line represents the acetonitrile gradient in 0.1% (v/v) trifluoroacetic acid (b) SDS-PAGE (11% gel) under nonreducing conditions of peak 1 (lane 1), peak 2 (lane 2) and peak 3 (lane 3) in (a). Molecular weight markers are indicated on left; ft: dye front. (c) SDS-PAGE (10% gel) under nonreducing conditions of fractions on gel filtration column chromatography of solubilized ZP. The PZP2 fractions (lanes 2 and 3) and the PZP3 fractions (lanes 6, 7 and 8) were used in this study. Proteins were stained with Coomassie brilliant blue in both (b) and (c).

and then fractionated into endo-ß-galactosidase-digested PZP2 (EßG-PZP2), EßG-PZP3α and EßG-PZP3β, by reverse-phase HPLC at 35°C on a Nucleosil 300-7C18 column (4 mm x 150 mm) (Chenico Scientific Co., Ltd, Tokyo) with three steps of a linear gradient of acetonitrile (0–19 min: 0–37%; 19–49 min: 37–45%; 49–54 min: 45–60%) in 0.1% (v/v) trifluoroacetic acid at a flow rate of 1 ml min⁻¹. EßG-PZP3β, EßG-PZP3α and EßG-PZP2 were eluted at concentrations of acetonitrile of about 38%, 40% and 60%, respectively (Fig. 1a). PZP2 and PZP3 were purified from solubilized ZP by gel filtration chromatography as described by Nakano et al. (1990). The zona glycoproteins used in this study were homogeneous, as shown in Fig. 1b, c.

Preparation of fluorescein isothiocyanate-labelled proteins

Solubilized ZP, EßG-PZP2, EßG-PZP3α or EßG-PZP3β (0.5 mg of each) was incubated with 400 nmol fluorescein isothiocyanate 1⁻¹ (FITC) at 25°C for 6 h in 1 ml PBS (for solubilized ZP) or 115 mmol NaHCO₃, 1⁻¹, pH 8.5 (for zona components). The reaction was stopped by the addition of glycine. Free FITC was removed by successive overnight dialyses against 10 mmol sodium phosphate 1⁻¹ and 300 mmol NaCl 1⁻¹, pH 7.0, and then 10 mmol sodium phosphate 1⁻¹ and 150 mmol NaCl 1⁻¹, pH 7.0 and finally distilled water. FITC-labelled proteins were quantitated by amino acid analysis as described by Nakano et al. (1987).
FITC-labelled proteins (10 μg each) were extensively digested with pronase (1 μg) in 0.1 ml PBS at 37°C for 18 h. After adding 3 ml 10 mmol sodium phosphate 1−2 and 0.1% SDS, pH 7.0, relative fluorescence intensity to free FITC of known concentration was measured at an emission wavelength of 515 nm, with the excitation at 480 nm. The molar ratios of FITC incorporated into solubilized ZP, EßG-PZP2, EßG-PZP3α and EßG-PZP3β were estimated as 2.2, 6.2, 6.8 and 4.0, respectively.

Cytological staining of boar spermatozoa with zona components and peanut agglutinin

Freshly ejaculated spermatozoa or cryopreserved epididymal spermatozoa were washed three times by centrifugation at 800 g for 3 min in 5 ml of culture medium (medium A: 20 mmol Tris 1−1, 130 mmol NaCl 1−1, 5 mmol KCl 1−1, 1 mmol MgCl2 1−1, 3 mmol CaCl2 1−1, 1 mmol glucose 1−1, 3 mmol sodium pyruvate 1−1, 2% (w/v) BSA, pH 7.4) (Petersen et al., 1981) and incubated at 37°C for 1 h for capacitation (sperm concentrations were 106−108 ml−1). The spermatozoa were then incubated with 20 μg FITC-labelled solubilized ZP ml−1 or 50 μg FITC-labelled zona components ml−1 dissolved in medium A for 1 h at 37°C in the presence or absence of 10 μg rhodamine-conjugated peanut agglutinin (R-PNA) ml−1 (sperm concentration was 2 × 107 ml−1). Spermatozoa were washed three times with medium A, fixed with 1.2% (w/v) glutaraldehyde in 150 mmol cacodylate 1−1, pH 7.2 (Shams-Bohran and Harrison, 1981) on a cover glass at room temperature for 50 min, washed three times with medium A and mounted onto a slide glass. Samples were examined by phase contrast and fluorescence microscopy on a BH2-QRF1 fluorescence microscope (Olympus, Tokyo). The effects of sulfated polysaccharides on the binding of solubilized ZP or EßG-PZP3α to spermatozoa were examined by preincubating spermatozoa in medium A containing 2 mg fucoidan ml−1, 3.2 mg dextran sulfate ml−1 or 10 mg chondroitin sulfate B ml−1 (Sigma, St Louis, MO) for 30 min at 37°C and then incubating with FITC-labelled solubilized ZP or FITC-labelled EßG-PZP3α. The concentrations of polysaccharides were considered to be adequate for the inhibition of the binding of FITC-labelled solubilized ZP to permeabilized spermatozoa (above 1 mg fucoidan ml−1 and 1.5 mg dextran sulfate ml−1; Jones, 1991) as was the concentration of chondroitin sulfate (above 10 mg ml−1; Jones, 1991) for 50% inhibition of binding of solubilized ZP to proacrosin.

Alternatively, capacitated spermatozoa were incubated with 80 μg unmodified solubilized ZP ml−1 or 20 μg each of unmodified zona components (PZP2, EßG-PZP2, PZP3, EßG-PZP3α and EßG-PZP3β) ml−1 instead of the FITC-labelled proteins described above. After washing and fixation, the cover glass was blocked with medium A at 37°C for 1 h. Zona glycoproteins bound to spermatozoa were visualized using anti-pig ZP antiserum diluted to 1:100 with medium A as a first antibody and FITC-conjugated goat anti-rabbit IgG (Wako Pure Chemicals, Tokyo) diluted to 1:1000 as a second antibody. Anti-pig ZP antiserum recognizes all the components of pig ZP (Noguchi et al., 1994).

Detection of zona-binding protein in boar sperm extracts by using anti-pig ZP antiserum or biotinylated EßG-PZP3α

Cryopreserved epididymal spermatozoa were washed and capacitated as described above. The capacitated spermatozoa were washed with PBS once to remove BSA in medium A, suspended in SDS sample buffer (Laemmli, 1970) and heated at 100°C for 3 min. After centrifugation at 2000 g for 3 min, the soluble fraction (105 spermatozoa per lane) was subjected to SDS-PAGE and then transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, MA) as described by Towbin et al. (1979). The membranes were blocked with 3% BSA in Tris-buffered saline (TBS), incubated with 2 μg solubilized ZP ml−1 or 1 μg of each of the zona components ml−1 in TBS containing 1% BSA for 3 h at 37°C and then washed three times (for 15 min each time) in TBS containing 0.05% Tween 20 (T-TBS). After incubation with anti-pig ZP antiserum diluted to 1:200 with TBS containing 1% BSA for 2 h at room temperature, the membranes were washed three times (15 min each) in T-TBS and then incubated with peroxidase-conjugated anti-rabbit IgG (Wako Pure Chemicals, Tokyo) diluted to 1:1000. After washing, colour was developed with 4-chloro-1-naphthol, Rabbit anti-boar acrosin antiserum (kindly donated by T. Baba, University of Tsukuba, Ibaraki) diluted to 1:1000 was used as a first antibody to detect proacrosin and acrosin.

EßG-PZP3α was biotinylated as described by Töpffer-Petersen and Henschen (1988) and tested as follows. Biotinylated EßG-PZP3α (0.3 μg) was subjected to SDS-PAGE followed by transfer to PVDF membrane. The membrane was blocked as described above and then incubated with streptavidin–peroxidase (Sigma, St Louis, MO) diluted to 1:1000 with TBS containing 1% BSA (w/v) at room temperature for 30 min. After washing, colour was developed with 4-chloro-1-naphthol and biotinylated EßG-PZP3α was strongly stained. Acid extract from freshly ejaculated spermatozoa was prepared as described by Takada et al. (1994) and subjected to SDS-PAGE and then transferred to PVDF membrane. The membrane was blocked as described above, preincubated in the presence or absence of anti-acrosin antiserum diluted to 1:400 at room temperature for 1 h. After washing three times (15 min each) with T-TBS, the membrane was incubated with 1 μg biotinylated EßG-PZP3α ml−1 in TBS containing 1% (w/v) BSA at room temperature for 1 h and washed a further three times (15 min each) with T-TBS. Incubation with streptavidin–peroxidase and colour development were performed as described above.

Results

Evaluation of the acrosomal status of boar spermatozoa

It was necessary to evaluate acrosomal status precisely so that the binding site of the ZP on spermatozoa could be examined. We evaluated acrosomal status by combining the fluorescent staining of spermatozoa with R-PNA (Jones, 1991) with the phase contrast observation of spermatozoa fixed with glutaraldehyde in cacodylate buffer (Shams-Bohran and
Cytochemical staining of boar ejaculated spermatozoa with fluorescein isothiocyanate (FITC)-labelled solubilized zona pellucida (ZP) and rhodamine-conjugated peanut agglutinin (R-PNA). Acrosome-intact (a, b and c), acrosome-damaged or partially acrosome-reacted (d, e and f) and fully acrosome-reacted (g, h and i) spermatozoa were double stained with FITC-labelled solubilized ZP and R-PNA. The acrosomal status of the spermatozoa was evaluated by phase contrast image (a, d and g) and fluorescent staining pattern with R-PNA (c, f and i). Staining with FITC-labelled solubilized ZP is shown in (b), (e) and (h). Scale bar represents 10 μm.

Analysis of the ZP-binding site on spermatozoa by cytochemical staining with solubilized ZP or ZP components

FITC-labelled solubilized ZP and FITC-labelled EßG-PZP3α inhibited the sperm-egg binding as effectively as unmodified solubilized ZP and EßG-PZP3α in a competition assay performed in vitro as described by Noguchi et al. (1992).

FITC-labelled solubilized ZP bound to the acrosomal region only when the acrosomal region stained positively with R-PNA (Fig. 2e, f). The acrosome region of about 90% of acrosome-damaged or partially acrosome-reacted spermatozoa were stained with FITC-labelled solubilized ZP (n = 500). The...
percentage of acrosome-damaged or partially acrosome-reacted spermatozoa stained with FITC-labelled solubilized ZP and the fluorescence intensity in the acrosomal region were not changed in the absence of Ca\(^{2+}\) (data not shown). The staining of acrosome-intact spermatozoa with FITC-labelled solubilized ZP was as faint as that of spermatozoa incubated without FITC-labelled solubilized ZP (Fig. 2b). Staining with FITC-labelled solubilized ZP was also observed in acrosomal caps released upon acrosome reaction (Fig. 3), but not on the inner acrosomal membrane of fully acrosome-reacted spermatozoa (Fig. 2h). When FITC-labelled fetuin or FITC-labelled IgG was incubated with capacitated spermatozoa as a control, the postacrosomal region and midpiece in some spermatozoa were faintly stained, but no significant staining was observed in the acrosomal region.

Approximately 92% of acrosome-damaged or partially acrosome-reacted spermatozoa were stained with FITC-labelled EßG-PZP3α in the acrosomal region (n = 100) (Fig. 4e), whereas 33% and 19% of spermatozoa were stained with FITC-labelled EßG-PZP2 and FITC-labelled EßG-PZP3β, respectively (n = 100), and the fluorescent intensities were much lower than that with FITC-labelled EßG-PZP3α. Similar results were obtained by indirect immunofluorescent staining of sperm-bound zona glycoproteins using anti-pig ZP antisera. In addition, the indirect immunofluorescent staining of sperm-bound PZP3 and PZP2 showed the same pattern on spermatozoa as EßG-PZP3α and EßG-PZP2, respectively.

Acrosome-intact and fully acrosome-reacted spermatozoa were not stained with solubilized ZP or zona components when R-PNA was omitted from the reaction mixture, indicating that the inability of solubilized ZP or zona components to bind to acrosome-intact and fully acrosome-reacted spermatozoa is not due to the binding of peanut agglutinin to the oligosaccharides of zona glycoproteins or to sperm glycoproteins.

There were no differences in the binding sites of zona glycoproteins of freshly ejaculated and cryopreserved epididymal spermatozoa.

Effects of sulfated polysaccharides on the binding of FITC-labelled solubilized ZP, or FITC-labelled EßG-PZP3α, to the acrosome

The binding of FITC-labelled solubilized ZP to the acrosomal region of acrosome-damaged or partially acrosome-reacted spermatozoa was inhibited by fucoidan or dextran sulfate, competitors for the zona-binding of proacrosin, but very little by chondroitin sulfate B (Fig. 4a–d). The binding of FITC-labelled EßG-PZP3α to the acrosome was also inhibited by fucoidan or dextran sulfate but very little by chondroitin sulfate B (Fig. 4e–h).

Proacrosin and acrosin-binding of EßG-PZP3α

The zona-binding proteins of capacitated epididymal spermatozoa were detected by immunostaining of zona glycoproteins with anti-pig ZP antisera. Solubilized ZP, PZP3 and EßG-PZP3α bound to the sperm proteins of apparent molecular mass 56 kDa, 52 kDa, 42 kDa and 38 kDa (Fig. 5a, lanes 2, 4 and 5). Other than those proteins, EßG-PZP3α bound to 32 kDa and 18 kDa proteins (lane 5). EßG-PZP3β did not show significant binding to sperm proteins (lane 7). PZP2 faintly recognized the 56 kDa, 52 kDa, 42 kDa and 38 kDa proteins (lane 8). The binding of solubilized ZP and EßG-PZP3α to the 56 kDa, 52 kDa, 42 kDa and 38 kDa proteins was reduced in the presence of 1.5 mg fucoidan ml\(^{-1}\) (lanes 3 and 6). Moreover, anti-acrosin antisera recognized the proteins with similar mobilities to the zona-binding proteins (lane 9). The effect of anti-acrosin antisera on the binding of biotinylated EßG-PZP3α to the sperm proteins was investigated to determine whether the zona-binding proteins are proacrosin and acrosin. Biotinylated EßG-PZP3α bound to the 56 kDa, 52 kDa and 42 kDa sperm proteins that were also detected by anti-acrosin antisera (Fig. 5b, lane 2) and to low molecular mass (20–16 kDa) proteins in the acid extract from freshly ejaculated spermatozoa (lane 3). The binding of biotinylated EßG-PZP3α to the 56 kDa, 52 kDa and 42 kDa proteins was inhibited by the preincubation of the membrane with anti-acrosin antisera but the binding to the low molecular mass proteins was not inhibited (lane 4).

Discussion

It was found that solubilized ZP binds inside the acrosome and to the acrosomal cap released upon acrosome reaction. Binding of solubilized ZP to acrosome-intact or fully acrosome-reacted spermatozoa could not be detected by the methods used in the study reported here. Jones (1991) reported that FITC-labelled pig zona glycoproteins do not bind to intact spermatozoa but bind to the acrosomes of permeabilized spermatozoa and the results reported here are consistent with this. These findings suggest that the binding site of the ZP is localized mainly in the acrosomal matrix and on the membranous compartments in the acrosome.

Among the zona components, only EßG-PZP3α showed significant binding to the acrosome. The binding of solubilized ZP and EßG-PZP3α to the acrosome was inhibited by fucoidan and dextran sulfate. Western blot analyses of zona-binding proteins suggested that EßG-PZP3α, as well as solubilized ZP, binds to proacrosin–acrosin, which is a major zona-binding protein of boar spermatozoa. Proacrosin–acrosin may mediate the binding of EßG-PZP3α, as well as that of solubilized ZP, to the acrosome of partially acrosome-reacted spermatozoa. Jones et al. (1988) proposed, taking the binding of proacrosin–acrosin...
to ZP into consideration, that in pigs acrosome-intact spermatozoa or spermatozoa in the initial stage of acrosome reaction encounter the ZP. The spermatozoa in an intermediate state between acrosome-intact and fully acrosome-reacted bind firmly to the zona surface. Then, after the spermatozoa remove the acrosomal cap at the surface of the zona, the fully acrosome-reacted spermatozoa penetrate the zona matrix.

When pig eggs were incubated with capacitated spermatozoa and then washed vigorously by pipetting, acrosomal caps were left on the surface of the ZP (Yonezawa et al., unpublished).

A possible reason for the failure to detect the binding of solubilized ZP or EβG-PZP3a to acrosome-intact or fully acrosome-reacted spermatozoa is that the affinity of the solubilized form of the ZP for acrosome-intact and fully acrosome-reacted spermatozoa is too low to detect the binding. Although solubilized pig ZP induces acrosome reaction in ejaculated boar spermatozoa, the increase in the number of acrosome-reacted spermatozoa is quite low in comparison with that in mice (Berger et al., 1989). We reported that native ZP structure is necessary for the completion of acrosome reaction in a fertilization assay in vitro (Yoshizawa et al., 1994). Native ZP structure might be necessary for the binding of the ZP to acrosome-intact spermatozoa.

We also showed that an inhibitor of β-N-acetylhexosaminidase reduces the rate of in vitro fertilization in pigs using cumulus-enclosed eggs, but that it changes the rate very little when cumulus-free eggs are used (Takada et al., 1994). β-N-acetylhexosaminidase purified from boar sperm acrosome possesses cumulus dispersion activity (Takada et al., 1994). Although it is not yet clear whether acrosomal enzymes play an essential role in cumulus dispersion in pigs and the acrosomal status of fertilizing boar spermatozoa on the surface of ZP is not yet known, taking the involvement of proacrosin—acrosin in sperm—ZP binding and the involvement of acrosomal enzymes in cumulus dispersion into consideration, we propose that some boar spermatozoa initiate the acrosome reaction before penetration into the cumulus oophorus and disperse cumulus cells by using their acrosomal enzymes, and that partially acrosome-reacted spermatozoa bind to the ZP and that this induces the completion of the acrosome reaction.

The apparent binding of EβG-PZP3a, which does not contain sulfated N-acetylpolyaccharose, to proacrosin—acrosin suggests the involvement of a core region of sugar chains of PZP3a other than sulfated N-acetylpolyaccharose in the binding of the ZP to proacrosin—acrosin. Noguchi et al. (1992) reported that neutral sugar chains isolated from PZP3 inhibit sperm—oocyte binding in a competition assay in vitro, whereas acidic sugar chains do not. Acidic carbohydrate chains of pig zona glycoproteins are sulfated at the C-6 position of GlcNAc residues in N-acetyllactosamine (Noguchi and Nakano, 1992; Hokke et al., 1993). In the study reported here, a sulfated polymer of a neutral sugar, fucoidan and dextran sulfate, inhibited the binding of solubilized ZP or EβG-PZP3a to the acrosome, whereas a sulfated polymer containing an amino sugar (chondroitin sulfate B) did not inhibit the binding. This finding suggests that the sulfated N-acetylpolyaccharose of pig zona glycoproteins is not essential for the species-specific binding of the ZP to spermatozoa, and that if it is involved in binding, it has a subsidiary effect.

The inhibition of proacrosin—acrosin binding of EβG-PZP3a by fucoidan may result from competition for common binding sites or the hindrance of access of EβG-PZP3a to its binding site on proacrosin—acrosin. Töpfer-Petersen et al. (1990)

![Fig. 4. Effects of sulfated polysaccharides on the staining of acrosome-damaged or partially acrosome-reacted spermatozoa with fluorescein isothiocyanate (FITC)-labelled solubilized zona pellucida (ZP) or FITC-labelled endo-β-galactosidase-digested PZP3a (EβG-PZP3a). Spermatozoa were preincubated in the absence of competitors (a, e) or in the presence of fucoidan (b, f), dextran sulfate (c, g) or chondroitin sulfate B (d, h) and then stained with FITC-labelled solubilized ZP (a–d) or FITC-labelled EβG-PZP3a (e–h). Scale bar represents 10 μm.](image)
reported that the binding site of solubilized ZP was on the amino-terminal 15 kDa part of the heavy chain. One of the important regulatory steps for species-specific recognition between gametes may be binding of ZP to proacrosin–acrosin as reported by Williams and Jones (1993). Studies on the molecular mechanism of binding of EßG-PZP3α to proacrosin–acrosin would give further insight into the molecular basis of species-specific interaction of gametes.

The authors thank S. Miura and K. Sonohara. Chiba Prefectural Livestock Experiment Station, for kindly supplying the ejaculated boar spermatozoa; and K. Hozumi for technical assistance. This study was supported in part by a Saneyoshi Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References

Jones R (1993) Interaction of zona pellucida glycoproteins, sulphated carbohydrates and synthetic polymers with proacrosin, the putative egg-binding protein from mammalian spermatozoon Development 111 1155–1163

Noguchi S, Hatanaka Y, Tobita T and Nakano M (1992) Structural analysis of the N-linked carbohydrate chains of the 55-kDa glycoprotein family (PZP3) from porcine zona pellucida European Journal of Biochemistry 204 1089–1100

Sacco AG, Yurewicz EC, Subramanian MG and Matzat PD (1989) Porcine zona pellucida: association of sperm receptor activity with the α-glycoprotein component (ZP3α) of the Mr = 55000 family (ZP3) Biology of Reproduction 41 523–532

Töpfer-Petersen E and Henschen A (1988) Zona pellucida-binding and fucose-binding of boar sperm acrosin is not correlated with proteolytic activity Biological Chemistry Hoppe-Seyler 369 69–75

Töpfer-Petersen E, Steinberger M, Ebner von Eschenbach C and Zucker A (1990) Zona pellucida-binding of boar sperm acrosin is associated with the N-terminal peptide of the acrosin B-chain (heavy chain) FEBS Letters 265 51–54

Towbin H, Staehelin T and Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications Proceedings of the National Academy of Sciences USA 76 4350–4354

Yurewicz EC, Sacco AG and Subramanian MG (1987) Structural characterization of the Mr = 55000 antigen (ZP3) of porcine oocyte zona pellucida Journal of Biological Chemistry 262 564–571

Yurewicz EC, Pack BA and Sacco AG (1992) Porcine oocyte zona pellucida Mr 55,000 glycoproteins: identification of O-glycosylated domains Molecular Reproduction and Development 33 182–188

Downloaded from Bioscientifica.com at 01/07/2019 05:26:33AM via free access