Expression of mRNA encoding the prostaglandin F$_{2\alpha}$ receptor in bovine corpora lutea throughout the oestrous cycle and pregnancy

K. Sakamoto1, K. Miwa1, T. Ezashi1, E. Okuda-Ashtika1, K. Okuda2, T. Houtani3, T. Sugimoto3, S. Ito1,4 and O. Hayaishi1

1Department of Cell Biology, Osaka Bioscience Institute, Suita 565, Japan; 2Division of Animal Science and Technology, Faculty of Agriculture, Okayama University, Okayama 700, Japan; and Departments of 3Anatomy and 4Medical Chemistry, Kansai Medical University, Moriguchi 570, Japan

The abundance of mRNA encoding the PGF$_{2\alpha}$ receptor in bovine corpora lutea at different phases of the oestrous cycle and pregnancy was examined in relation to the number of [3H]PGF$_{2\alpha}$ binding sites. Corpora lutea were removed from cyclic (early: 3–5 days after ovulation; mid-cycle: 8–12 days after ovulation; late: 15–18 days after ovulation; and regressed: 20–21 days after ovulation) and pregnant (early: fetal size 9–13 cm (2–3 months); mid-cycle: fetal size 42–43 cm (5–6 months); and late: fetal size 78–80 cm (8 months)) cows and subjected to total RNA preparation, in situ hybridization and membrane preparation for [3H]PGF$_{2\alpha}$ binding assay. Northern blot analysis demonstrated that expression of PGF$_{2\alpha}$ receptor mRNA progressively increased from the early phase to the late phase of the oestrous cycle, and was markedly reduced at the regressed phase; while constant amounts of mRNA were observed in early and middle pregnant corpora lutea, and there was a significant reduction at late pregnancy. Specific high affinity [3H]PGF$_{2\alpha}$ binding sites with K_s values of 18.3–31.1 nmoI$^{-1}$ were observed in the luteal membrane during the oestrous cycle and pregnancy; this is consistent with the expression of PGF$_{2\alpha}$ receptor mRNA. The number of receptors decreased at the regressed phase and in early pregnancy. These results strongly suggest that PGF$_{2\alpha}$ is involved in not only luteolysis but also luteal functions in both pregnant and nonpregnant cows.

Introduction

Since prostaglandin F$_{2\alpha}$ (PGF$_{2\alpha}$) was first identified as one of the prostanoids to cause contraction of smooth muscle (Anggård and Bergström, 1963; Anggård and Samuelsson, 1963; Perkins 1975), a variety of its biological actions have been reported in diverse tissues (Moncada et al., 1985; Coleman et al., 1989). The corpus luteum is a transient endocrine organ formed from the ruptured follicle after ovulation and its primary function is considered to be the production of progesterone, which prepares the uterus endometrium for implantation and maintains early pregnancy. If pregnancy does not occur, the corpus luteum must regress to allow the next cycle of follicle development to begin. Among the biological actions of PGF$_{2\alpha}$, the best known physiological role is its involvement in luteolysis, especially at the initiation of luteal regression in cows, through its binding to a specific receptor on the luteal membrane (Horton and Poyser, 1976; Auletta and Flint, 1988; Steele and Leung, 1993). Previous studies show that an increased concentration of PGF$_{2\alpha}$ in utero-ovarian venous blood is observed in the late oestrous cycle, while PGF$_{2\alpha}$ secretion is markedly reduced at early pregnancy (Gleeson et al., 1974; Moejono et al., 1977). Administration of PGF$_{2\alpha}$ to cows causes luteal regression following a precipitous decline in serum progesterone concentration as early as 4–6 days after ovulation (Gleeson, 1974; Hansel and Convey, 1983), demonstrating that the synthesis and secretion of PGF$_{2\alpha}$ in ruminants, including cows, are regulated strictly during the oestrous cycle and pregnancy. Specific [3H]PGF$_{2\alpha}$ binding sites have been reported in corpora lutea of cows (Kimball and Lauderdale, 1974; Powell et al., 1975; Rao, 1975). The concentration of high affinity PGF$_{2\alpha}$ binding sites has been quantified on bovine corpora lutea (Rao et al., 1979) and luteal cells (Chegini et al., 1991) taken at different stages of the oestrous cycle, and high binding activity of [3H]PGF$_{2\alpha}$ was observed at the late oestrous phase. Despite rapid luteolysis following PGF$_{2\alpha}$ administration in vivo and the presence of binding sites for PGF$_{2\alpha}$ in bovine corpus luteum, direct effects of PGF$_{2\alpha}$ on corpus luteum function in vitro are modest.

In previous studies, we and others have isolated functional cDNA clones for bovine (Sakamoto et al., 1994), mouse (Sugimoto et al., 1994) and human (Abramovitz et al., 1994) PGF$_{2\alpha}$ receptor with seven transmembrane domains characteristic of G-protein-coupled receptors. We reported that the PGF$_{2\alpha}$ receptor is coupled to phosphoinositide metabolism via Gq in cDNA transfected Chinese hamster ovary cells (Ito et al., 1994). We also demonstrated, by RNA blot analysis, that the PGF$_{2\alpha}$ receptor mRNA is highly expressed and accumulated in
large luteal cells of the bovine corpus luteum at an unspecified stage of the oestrous cycle (Sakamoto et al., 1994). In initial attempts to resolve the disparity in PGF$_{2\alpha}$ actions in vivo and in vitro, and to characterize the transcriptional regulation of the gene encoding the bovine PGF$_{2\alpha}$ receptor in the corpus luteum, we performed northern blot analysis and in situ hybridization in relation to binding activities for [3H]PGF$_{2\alpha}$ to the crude luteal membrane during the oestrous cycle and pregnancy.

Materials and Methods

Dissociation of corpora lutea

Ovaries with corpora lutea from Holstein-Friesian cows were collected at a local abattoir within 30 min after slaughter. The luteal phase was classified as early (3–5 days after ovulation), middle (8–12 days after ovulation), or regression (20–21 days after ovulation) stages by macroscopic observation of the ovary as described by Okada et al. (1988). The gestational ages were determined from fetal crown–rump length (Kristoffersen, 1960) and classified as: early: 2–3 months (9–13 cm); middle: 5–6 months (42–43 cm); and late: 8 months (78–80 cm). After determination of the stages at the abattoir, the corpora lutea were separated immediately from the remaining ovarian tissue, frozen rapidly in liquid nitrogen and stored at −80°C until processed.

Northern blot analysis

Total RNAs were prepared from bovine corpora lutea by the acid guanidium thiocyanate method described by Chomczynski and Sacchi (1987), and poly(A)$^+$ RNAs were purified using the mRNA purification kit (Pharmacia LKB Biotechnology, Piscataway). Two micrograms of poly(A)$^+$ RNAs were subjected to electrophoresis on 1.0% (w/v) agarose-formaldehyde gel and transferred on to a Nytran nylon membrane filter purchased from Schleicher & Schuell (Keene). The clone SN463 contains the 230 bp insert DNA corresponding to transmembrane domains IV–VI of the bovine PGF$_{2\alpha}$ receptor (Sakamoto et al., 1994). The 230 bp DNA, amplified by polymerase chain reaction (PCR), was labelled by 32P by the Megaprime DNA labelling system (Amersham Corp., Arlington Heights) and used as a probe DNA. Hybridization was performed under standard hybridization conditions: 50% (v/v) formamide; 0.2% (w/v) SDS; 5 x Denhardt’s solution; 5 x standard saline phosphate (SSPE); and 100 µg sonicated salmon sperm DNA ml$^{-1}$. Hybridization was carried out at 40°C and the membrane was washed with 1 x SSPE and 0.5% (w/v) SDS at 42°C.

Hybridization in situ

For the preparation of the anti-sense riboprobe, BC2211 DNA carrying the full-length cDNA for bovine PGF$_{2\alpha}$ receptor (Sakamoto et al., 1994) was digested with EcoRV and used as template for in vitro transcription in the presence of digoxigenin-11-UTP (Boehringer-Mannheim, Mannheim). The paraformaldehyde-fixed tissue sections of ovaries including corpora lutea were hybridized with the digoxigenin-labelled riboprobe in the following solution at 45°C: 50% (v/v) formamide; 4% (w/v) dextran sulfate; 250 µg salmon sperm DNA ml$^{-1}$; 250 µg yeast RNA ml$^{-1}$; 1 x Denhardt’s solution; 0.2% (w/v) SDS; 0.75 mol NaCl$^{-1}$; 25 mmol piperazine-N,N'-bis (2-ethanesulfonic acid)$^{-1}$. Hybridized sections were then incubated with RNase A for 30 min at 37°C. The hybridization material was reacted with alkaline phosphatase-conjugated anti-digoxigenin antibody (Boehringer-Mannheim, Mannheim) and signals were detected by incubation with medium containing nitroblue tetrazolium, 5-bromo-4-chloro-3-indolylphosphate and levamisole.

Binding of [3H]PGF$_{2\alpha}$ to luteal membrane fraction

Corpora lutea at each stage were homogenized in four volumes of the homogenizing buffer containing 0.15 mol NaCl$^{-1}$, 1 mmol EDTA$^{-1}$, and 10 mmol KPi$^{-1}$, pH 7.4, at 4°C with a Polytron homogenizer. The homogenate was filtered through two layers of cheesecloth and the filtrate was centrifuged at 1000 g for 10 min. The supernatant was centrifuged at 26 000 g for 20 min and the homogenized material sedimenting between 1000 and 26 000 g was resuspended in buffer A containing 0.1 mol NaCl$^{-1}$, 1 mmol EGTA$^{-1}$, and 10 mmol KPi$^{-1}$, pH 6.0, and used as the membrane fraction for binding assay. The [5,6,8,9,11,12,14,15-3H(N)]PGF$_{2\alpha}$ (168 Ci mmol$^{-1}$) was purchased from Du Pont-New England Nuclear. In preliminary experiments, specific bindings of 5 mmol [3H]PGF$_{2\alpha}$ to the 1000–26 000 g pellet obtained with and without 0.3 mol sucrose$^{-1}$ in the homogenizing buffer were not different (data not shown). Binding assay of [3H]PGF$_{2\alpha}$ to the membrane was carried out at 23°C essentially as described by Negishi et al. (1987). The affinity and concentration of the PGF$_{2\alpha}$ receptor in corpora lutea at each stage were determined from Scatchard plots after an incubation of 200 µg of the membrane with various concentrations of [3H]PGF$_{2\alpha}$ for 1 h in the presence or absence of a 1000-fold excess of unlabelled PGF$_{2\alpha}$.

Results

Northern blot analysis

In a previous report (Sakamoto et al., 1994), we described the complete nucleotide sequence and the deduced primary structure of bovine PGF$_{2\alpha}$ receptor. Clone SN463, screened by the standard PCR using degenerated primers, carries the 230 bp insert DNA comprising transmembrane domains IV–VI of the PGF$_{2\alpha}$ receptor. Because this cDNA fragment represents the unique sequence for bovine PGF$_{2\alpha}$ receptor, the SN463 230 bp DNA fragment was commonly used as probe DNA for northern blot hybridization.

SN463 230 bp probe gave two RNA bands, one major 5.0 kb and another minor 2.0 kb RNA (Fig. 1a). Since both hybridizing signals remained intense even after washing twice in 1 x SSPE at 50°C, these two bands represent specific mRNA species which may encode bovine PGF$_{2\alpha}$ receptor protein. Over the course of the oestrous cycle, the 5.0 kb mRNA was increasingly expressed and accumulated, with a peak in the late
Expression of the bovine PGF$_{2a}$ receptor

Fig. 1. Northern blot analysis of poly(A) + RNA isolated from bovine corpora lutea. The poly(A) + RNAs used (2 μg of each) were isolated from bovine corpora lutea obtained from different phases of the oestrous cycle (lanes 1–4) and pregnancy (lanes 5–7): lane 1: early oestrous; lane 2: mid-oestrous; lane 3: late oestrous; lane 4: regressed oestrous; lane 5: early pregnancy; lane 6: mid-pregnancy; and lane 7: late pregnancy. The same Nytran membrane filter was hybridized sequentially with a 32P-labelled SN463 230 bp probe (a) and G3PDH probe (b). The positions of 18S and 28S rRNAs are indicated on the right.

Binding of 3H[PGF$_{2a}$] to luteal membrane fraction

The binding of 3H[PGF$_{2a}$] to the membrane derived from the corpus luteum at an early phase of the oestrous cycle is shown in Fig. 3. Specific binding was more than 80%, except for the maximum concentration (52 nmol l$^{-1}$) used here, and saturable. The Scatchard plot analysis showed an apparently single high-affinity binding site. Although the binding properties varied among preparations of corpora lutea at the same stage, such a single high-affinity binding site was observed with a preparation at all stages of the oestrous cycle and pregnancy. The capacity of 3H[PGF$_{2a}$] binding increased as the oestrous cycle progressed, together with the K_d values (Fig. 4). This was consistent with the northern blot analysis. Table 1 summarizes B_{max} and K_d values of high-affinity 3H[PGF$_{2a}$] binding sites on the corpora lutea at each stage of the oestrous cycle and pregnancy. The capacity (B_{max}) at the early, middle, and late phases of the oestrous cycle are 1.17 ± 0.16, 1.38 ± 0.17, and 1.58 ± 0.28 pmol mg$^{-1}$ protein, respectively, and the affinity (K_d), 18.3 ± 2.12, 19.1 ± 2.65, and 22.4 ± 1.26 nmol l$^{-1}$. The binding capacity was significantly reduced at the regressed phase, with a B_{max} value of 0.17 ± 0.05 pmol mg$^{-1}$ protein and a K_d value of 31.1 ± 2.99 nmol l$^{-1}$.

A high affinity binding site for 3H[PGF$_{2a}$] was also observed on the membrane fraction of corpora lutea at different stages of pregnancy.
Fig. 2. *In situ* hybridization of bovine ovaries with a digoxigenin-labelled riboprobe for PGF\textsubscript{2\alpha} receptor. Bright-field photomicrographs show the *in situ* hybridization of bovine ovaries with digoxigenin-labelled sense (b') and anti-sense (a, b, c–j) RNA probes synthesized from a cDNA clone for PGF\textsubscript{2\alpha} receptor *in vitro*. A highly specific hybridization signal is seen in the corpus luteum (CL) obtained at the mid-oestrous phase (b), while it is absent in the early oestrous phase (a). The sense riboprobe fails to express a hybridization signal in the corpus luteum obtained at the mid-oestrous phase (b'). (j) Hybridization-positive large luteal cells in the corpus luteum obtained at the mid-oestrous phase. Note that much smaller cells interspersed in these large cells remain negative for mRNA encoding the PGF\textsubscript{2\alpha} receptor (small arrows in j). Panels c–i show hybridization-negative or hybridization-positive luteal cells in the corpus luteum, prepared from ovaries at different luteal phases as follows; cyclic (c, early; d, middle; e, late; f, regressed) and pregnant (g, early; h, middle; i, late). Scale bars represent 2 mm (a and b), 100 µm (b'–j).
Fig. 3. Binding of [³H]PGF₂α to the corpus luteal membrane at the early stage of the bovine oestrous cycle. The luteal membrane was incubated for 60 min at 23°C with increasing concentrations of [³H]PGF₂α in the presence (●) or absence (○) of a 1000-fold excess of unlabelled PGF₂α (inset). Specific [³H]PGF₂α binding (●) was obtained by subtraction of nonspecific binding from total binding at the indicated concentrations of [³H]PGF₂α. Each point represents the mean ± SEM of triplicate determinations.

Table 1. The number and affinity of high-affinity [³H]PGF₂α binding to corpora luteal membranes at different stages of the oestrous cycle and pregnancy in cows

<table>
<thead>
<tr>
<th>Stage</th>
<th>Number of samples</th>
<th>B_{max} (pmol mg⁻¹ protein)</th>
<th>K_d (nmol l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oestrus</td>
<td></td>
<td>1.17 ± 0.16</td>
<td>18.3 ± 2.12</td>
</tr>
<tr>
<td>Early</td>
<td>5</td>
<td>1.38 ± 0.17</td>
<td>19.1 ± 2.65</td>
</tr>
<tr>
<td>Mid</td>
<td>3</td>
<td>1.58 ± 0.28</td>
<td>22.4 ± 1.26</td>
</tr>
<tr>
<td>Late</td>
<td>3</td>
<td>0.17 ± 0.05</td>
<td>31.1 ± 2.99</td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>3</td>
<td>0.57 ± 0.05</td>
<td>28.8 ± 9.14</td>
</tr>
<tr>
<td>Mid</td>
<td>3</td>
<td>1.17 ± 0.03</td>
<td>23.7 ± 2.95</td>
</tr>
<tr>
<td>Late</td>
<td>3*</td>
<td>1.91</td>
<td>22.8</td>
</tr>
</tbody>
</table>

*Two of three membrane preparations from corpora lutea at late pregnancy exhibited no high-affinity binding activity to [³H]PGF₂α.

Discussion

The present study demonstrates the abundance of mRNA encoding the PGF₂α receptor in the bovine corpus luteum in relation to [³H]PGF₂α binding capacity of the luteal membrane throughout the oestrous cycle and pregnancy. In the cyclic corpora lutea, specific hybridization signals to the large 5.0 kb mRNA showed a progressive increase from the early phase, reached the highest value in the late cyclic phase, just before the corpora lutea began to regress. Our binding analysis showed the gradual increase in binding capacity of [³H]PGF₂α to the crude luteal membrane fraction over the course of the oestrous cycle. This is consistent with a previous report by Rao et al. (1979). When the process of luteolysis was completed in the regressed phase (day 21), both the amount of mRNA encoding the PGF₂α receptor and the binding activity of PGF₂α on the membrane were markedly reduced. Therefore, the increase in mRNA expression of PGF₂α receptor in the late oestrous phase may be responsible for the accumulation of receptor protein on the plasma membrane that initiates luteal regression. We detected high affinity [³H]PGF₂α binding sites, with a K_d value of 16.9 nmol l⁻¹, on the luteal membrane taken from the corpora lutea at the beginning of the early oestrous stage (data not shown), suggesting that expression of mRNA encoding PGF₂α receptor may start together with the formation and growth of the corpus luteum. Our results contrast with a previous report that, even with the existence of a considerable number of PGF₂α receptors in the middle of the oestrous cycle, the affinity (K_d = 3458 nmol l⁻¹) of the bovine PGF₂α receptor in day 13 corpora lutea was more than 200 times lower than that (K_d = 17 nmol l⁻¹) in day 20 corpora lutea (Rao et al., 1979). The reason for the discrepancy remains unknown. However, the present results agree with the reports that exogenous PGF₂α administered in vivo in cows can initiate luteal regression as early as 4–6 days after ovulation (Gleeson, 1974; Hansel and Convey, 1983). We have shown that expression of high-affinity [³H]PGF₂α binding sites may be high enough to produce luteolysis in the bovine corpus luteum at the early stage, and so the present study supports the notion that the synthesis and release of PGF₂α is strictly regulated.
during the oestrous cycle and pregnancy (Gleeson et al., 1974; Moeljono et al., 1977).

Although \[^{3}H\text{PGF}_{2\alpha}\text{ binding activity and amount of PGF}_{2\alpha}\text{ receptor mRNA in cyclic corpora lutea altered progressively through the cycle}, \] less correlation was observed between them in pregnant corpora lutea. While the amount of receptor mRNA varied little in early and middle pregnancy, much higher binding activity was detected on the corpora lutea of mid-pregnancy than on those of early pregnancy. The corpus luteum produces progesterone and maintains pregnancy until the placenta replaces the function of the corpus luteum. The time of the luteo-placental shift (Auletta and Flint, 1988) in cows is much later than in primates (more than 200 days into the 280 day gestation), and so the corpus luteum remains viable even in late pregnancy. The expression of abundant receptors for \(\text{PGF}_{2\alpha}\) during the oestrous cycle and pregnancy implies the involvement of \(\text{PGF}_{2\alpha}\) in luteal functions besides luteolysis.

As is clearly indicated by in vivo hybridization, mRNA encoding the \(\text{PGF}_{2\alpha}\) receptor was expressed precisely on corpora lutea obtained from the mid-oestrous phase, but only a faint signal was detected in the early oestrous phase. Receptor mRNA was located mostly in large luteal cells but not or much less in small luteal and nonluteal cells. This is consistent with our previous results (Sakamoto et al., 1994) and also the location of \(^{3}H\text{PGF}_{2\alpha}\) receptor binding sites and receptors observed by quantitative light microscope autoradiography by Chegini et al. (1991). The cellular localization of receptor mRNA and, consequently, of receptor protein, does not change in the ovary.

We demonstrated that 5.0 kb mRNA produces a functional receptor protein and gives typical electrophysiological responses to \(\text{PGF}_{2\alpha}\) in Xenopus oocytes (Sakamoto et al., 1994). Besides the 5.0 kb major RNA band, northern blot analysis sometimes gave a fainter 2.0 kb RNA band. The content of this 2.0 kb mRNA was critically dependent on the preparation lot. So far, we have no indication of whether it encodes a functional receptor protein. Our data from northern blot analysis suggest that the cycle-dependent fluctuation of mRNA amount is quite different between these two RNA populations. The amount of 2.0 kb mRNA, unlike that of the 5.0 kb mRNA appeared to be constant during the oestrous cycle, even in the regressed phase, suggesting that it has a different regulatory mechanism of transcription. By genomic analysis, we established that the bovine haploid genome carries a single copy gene for the \(\text{PGF}_{2\alpha}\) receptor (T. Ezashi, K. Sakamoto, K. Miwa, E. Okuda-Ashitaka, S. Ito and O. Hayashi, unpublished). Therefore, at least two different promoters must conduct initiation of these two transcripts, one constitutively promoting smaller RNA synthesis, and the other activating transcription for larger RNA in an oestrous cycle-dependent manner. Specific trans-acting factors may be involved in the accumulation of 5.0 kb mRNA in the late-phase luteal cells. However, the difference in mRNA stability must be considered. An experiment by the 3' RACE-PCR method revealed the existence of two potential poly(A) tails, implying that the difference in mRNA stability is promoted by the external 3' untranslated region (K. Sakamoto, T. Ezashi, K. Miwa, E. Okuda-Ashitaka, S. Ito and O. Hayashi, unpublished). Determination of the exact transcription units of these RNAs is likely to be of prime importance in explaining the diversity in the amount of mRNA during the oestrous cycle. Identification of the transcription initiation sites and characterization of promoter activity of the \(\text{PGF}_{2\alpha}\) receptor gene are in progress in our laboratory.

This work was supported in part by grants for scientific research from the Ministry of Education, Science and Culture of Japan, grants from the Ministry of Health and Welfare of Japan, the Science Research Promotion Fund of the Japan Private School Promotion Foundation, the Naito Foundation, and the Ono Medical Research Foundation. The authors thank R. Yoshida for helpful advice and critical reading of the manuscript.

References

Ånggård E and Bergström S (1963) Biological effects of an unsaturated trihydric acid (\(\text{PGF}_{2\alpha}\)) from normal swine lung Acta Physiologica Scandinavica 58 1–12

Auletta FJ and Flini APF (1988) Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates and women especially in relation to the time of luteolysis Endocrine Reviews 9 86–105

Gleeson AR (1974) Luteal function in the cyclic cow after infusion of prostaglandin \(\text{F}_{2\alpha}\) through a uterine vein Journal of Reproduction and Fertility 36 487–488

Gleeson AR, Thorburn GD and Cox RJ (1974) Prostaglandin \(\text{F}_{2\alpha}\) concentrations in the utero-ovarian venous plasma of the cow during the late luteal phase of the oestrous cycle Prostaglandins 5 321–329

Hansel W and Convey EM (1983) Physiology of the oestrous cycle Animal Science Supplement 2 57 404

Horton EW and Poyser NL (1976) Uterine luteolytic hormone: a physiological role for prostaglandin \(\text{F}_{2\alpha}\) Prostaglandins 5 595–651

Ito S, Sakamoto K, Mochizuki-Oda N, Ezashi T, Miwa K, Okuda-Ashtaka I, Shevchenko VI and Hayashi O (1994) Prostaglandin \(\text{F}_{2\alpha}\) receptor is coupled to \(\Gamma_{\text{G}}\) in \(\text{cDNA}-\)transfected Chinese hamster ovary cells Biochemical and Biophysical Research Communications 200 756–762

Kimball FA and Lauderdale JW (1974) Prostaglandin \(\text{E}_{1}\) and \(\text{E}_{2}\) specific binding in bovine corpus luteal: comparison with luteolytic effects Prostaglandins 10 313

Moeljono MPE, Thatcher WW, Bazer FW, Frank M, Owens LJ and Wilcox CJ (1997) A study of prostaglandin \(\text{F}_{2\alpha}\) as the luteolysis in swine. II Characterization and comparison of prostaglandin F. estrogens and progestin concentrations in utero-ovarian vein plasma of non-pregnant and pregnant gilts Prostaglandins 54 541–555

Perkins ES (1975) Prostaglandins and the eye Advances in Ophthalmology 29 2–21
Rao CHV (1975) The presence of discrete receptors for prostaglandin F2α in the cell membranes of bovine corpora lutea Biochemical and Biophysical Research Communications 64 416–424
Rao CHV, Estergreen VL, Carman Jr FR and Moss GE (1979) Receptors for gonadotrophin and prostaglandin F2α, in bovine corpora lutea of early, mid and late luteal phase Acta Endocrinologica 91 529–537