A comparison of the number of inner cell mass and trophectoderm cells of preimplantation Meishan and Yorkshire pig embryos at similar developmental stages

R. M. Rivera, C. R. Youngs and S. P. Ford*

Department of Animal Science, Iowa State University, Ames, IA 50011, USA

Day 12 blastocysts from Meishan gilts contain fewer cells than do day 12 blastocysts from Yorkshire gilts. The purpose of this study was to evaluate the effect of breed on the relative numbers of inner cell mass and trophectoderm cells in Meishan and Yorkshire embryos at similar stages. Embryos were collected on days 5.5–6.5 of gestation and were subjected to image analysis and differential cell staining. No breed differences were detected in the thickness of zona pellucida or in the areas of the perivitelline space, embryo proper, blastocoel and inner cell mass at any of the developmental stages examined (compact morula, early blastocyst or blastocyst). However, differences were observed in the pattern of growth of embryos from Meishan versus Yorkshire gilts. The total number of cells of Meishan embryos from Meishan gilts increased progressively from the compact morula through the blastocyst stage, whereas the total number of cells of embryos from Yorkshire gilts remained constant from compact morula through to early blastocyst, and then increased markedly from the early blastocyst to the blastocyst stage. At the blastocyst stage, Meishan embryos contained fewer \((P < 0.05)\) cells than did Yorkshire embryos, and this lower number of cells was due entirely to fewer \((P < 0.05)\) trophectoderm cells. As the number of inner cell mass cells increased during embryonic growth, Meishan embryos exhibited a slower \((P < 0.02)\) increase in the number of trophectoderm cells than did Yorkshire embryos. These results demonstrate that the reduced number of cells present in Meishan embryos results from a selective reduction in the number of trophectoderm, but not inner cell mass, cells.

Introduction

Chinese Meishan pigs are more prolific than European pig breeds, averaging from three to five more piglets per litter (Cheng, 1983). Recent studies from our laboratory have demonstrated a reduced developmental rate of Meishan embryos versus those of European pig breeds both \(in vivo\) and \(in vitro\). Youngs et al. (1993) reported that Meishan embryos collected on day 2 after oestrus and cultured \(in vitro\) to the early blastocyst stage exhibited a lower total number of cells when compared with Yorkshire embryos. In another study, Anderson et al. (1993) showed that on day 12, average littermate embryonic diameter and DNA content were less for Meishan embryos than for embryos from European white crossbred sows, although the range of embryonic sizes was similar between the two breeds. Those researchers also reported that Meishan embryos produced markedly less oestadiol than did embryos from European white crossbred sows, even when comparing embryos of the same diameter.

During embryonic development, differentiation begins at the time of compaction with the formation of tight cell junctions between the outermost cells of an embryo. These outer cells are subsequently referred to as trophectoderm cells, and the remaining inner cells of the embryo are known as inner cell mass cells. The inner cell mass cells give rise to the embryo proper, yolk sac and other extraembryonic tissues, and the trophectoderm cells give rise to the chorionic ectoderm (Gardner et al., 1973; Bard and Kaufman, 1994) and are the first site of embryonic oestrogen secretion (Gadsby et al., 1980). Oestrogen, produced by the trophectoderm cells of larger littermate embryos, alters the uterine environment, possibly through changes in endometrial secretory products, making it unsuitable for smaller littermate embryos (Geisert et al., 1982a).

An initial, rapid mitotic rate of trophectoderm cells, followed by their morphological changes, results ultimately in elongation and spacing of pig embryos within the uterus (Geisert et al., 1982b). It has been suggested (Ford and Youngs, 1993; Youngs et al., 1994) that Meishan embryos may have the ability to elongate from fewer cells than Yorkshire embryos. Recently, Wilson et al. (1995) confirmed that Meishan embryos elongate from fewer cells and reach a reduced length on day 14 than do Yorkshire embryos.

The objective of the present study was, therefore, to determine whether there are differences in the relative numbers

*Correspondence. Received 11 May 1995.
of inner cell mass and trophoderm cells among compact morula, early blastocyst and blastocyst stage Meishan and Yorkshire embryos.

Materials and Methods

Animals

Meishan (n = 12) and Yorkshire (n = 11) gilts of similar reproductive age (two to six postpubertal oestrous cycles; Table 1) were checked for oestrus twice a day (08:00 and 17:00 h) with an intact boar. The first observation of behavioural oestrus, irrespective of the time of day, was designated as the beginning of day 0. Gilts were hand-mated to a boar of the same breed at day 0 and were mated again 24 h later.

Collection of embryos

In our population of pigs, the ovulation time following the onset of oestrus is similar for both Meishan and Yorkshire gilts (Youngs et al., 1994), yet Meishan embryonic development has been shown to be slower (Anderson et al., 1993; Youngs et al., 1993). Therefore, to correct for known breed differences in developmental rate, embryos from Meishan gilts were surgically collected on days 6.0 (n = 94) or 6.5 (n = 44) while embryos from Yorkshire gilts were collected on days 5.5 (n = 50) or 6.0 (n = 63; Table 1). Meishan and Yorkshire gilts were sedated and anaesthetized as described by Youngs et al. (1994). The uterus was exteriorized via midventral laparotomy, and an incision was made in the antimesometrial region of the uterine wall 2–3 cm from the utero–tubal junction. A borosilicate glass cannula (10 mm o.d. and 10 cm long) was inserted into the incision pointing away from the oviduct and was kept in place with a silk ligature. Twenty millilitres of Dulbecco’s PBS (Biowhittaker, Walkersville, MD) containing 2% (w/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic (10,000 U penicillin ml⁻¹; 100 mg streptomycin ml⁻¹ and 25 mg amphotericin-B ml⁻¹; AGTECH Inc., Manhattan, KS) was injected via a blunt 18-gauge needle inserted at the base of the cannulated uterine horn. The embryos were moved to the tip of the uterine horn by firmly pushing the flushing medium along the length of the horn, where medium was collected through the cannula into a sterile glass Petri dish.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Meishan (n = 12)</th>
<th>Yorkshire (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of oestrous cycles</td>
<td>3.1 ± 0.4 (median = 2)</td>
<td>2.9 ± 0.4 (median = 2)</td>
</tr>
<tr>
<td>Number of corpora lutea</td>
<td>14.8 ± 0.8</td>
<td>16.2 ± 0.8</td>
</tr>
<tr>
<td>Percentage recovery of embryos (embryo/corpora lutea)</td>
<td>84 ± 4</td>
<td>86 ± 4</td>
</tr>
<tr>
<td>Number of embryos subjected to differential staining*</td>
<td>138</td>
<td>113</td>
</tr>
</tbody>
</table>

*Values are presented as least squares means ± SEM. No differences were observed in any of the parameters measured (P > 0.20).

Classification of developmental stage of embryos

After collection, the embryos were immediately transferred to modified PBS (mPBS; 0.0036% (w/v) sodium pyruvate, 0.0023% (w/v) l-glutamine, 0.4% (w/v) BSA and 1% (v/v) penicillin–streptomycin). The stage of development was determined in all embryos using the International Embryo Transfer Society method (Stringfellow and Seidel, 1990) with modifications made in our laboratory. The criteria used to classify the embryos were: (i) compact morula: embryo had a large perivitelline space, blastomeres had compacted, cell definition was lost, and no blastocoele was present; (ii) early blastocyst: an evident perivitelline space, embryo had two distinct populations of cells, a small blastocoele and (iii) blastocyst: embryo had very little, or no, perivitelline space, a large blastocoele and no evidence of thinning of the zona pellucida.

Immunosurgical lysis and differential staining

The zona pellucida of each embryo was removed by incubation at 39°C for 45 s in an acidic Tyrode’s solution (0.8% (w/v) NaCl, 0.02% (w/v) KCl, 0.024% (w/v) CaCl₂, H₂O, 0.01% (w/v) MgCl₂, 0.1% (w/v) glucose, 0.4% (w/v) polyvinyl pyrrolidone; pH 2.5; Hogan et al., 1986). After removal of the zonae pellucidae, embryos were washed three times in mPBS. The embryos were subjected to immunosurgery and were differentially stained by the method of Hardy et al. (1989) with modifications determined to be necessary for pig embryos. Briefly, the embryos were incubated on ice for 30 min in 10 nmol trinitrobenzene sulfonic acid 1⁻¹ (TNB; Sigma Chemical Co, St Louis, MO) to label cell surface proteins with covalently bound trinitrophenol (TNP) groups. This allowed the use of an antisemur against dinitrophenol (DNP) which crossreacts with TNP-labelled proteins. Embryos were then washed three times in mPBS and placed in an anti-DNP antibody solution (ICN Immunobiologicals, Costa Mesa, CA; 0.1 mg ml⁻¹ in mPBS) for 30 min at 39°C. The embryos were again washed three times in mPBS and were then placed in an mPBS solution containing guinea-pig complement serum (1:5 dilution; Sigma Chemical Co.) and propidium iodide.
were mass generalized with computer used randomly Image mass each 380 TMD) counted (trophectoderm of nation, cell initial cell trophoderm staining Sigma fluorochrome staining (0.01 mg ml⁻¹; Sigma Chemical Co.) at 39°C for 20 min. This step resulted in the lysis of the trophoderm cells and the red staining of trophoderm cell nuclei. Immediately after this step, embryos were placed in absolute ethanol containing the fluorochrome bisbenzimide (0.05 mmol l⁻¹, Hoechst 33258; Sigma Chemical Co.) for 1 h at 4°C. This resulted in the staining of all cell nuclei (intact inner cell mass and lysed trophoderm) and the fixation of the embryo, with the inner cell mass cell nuclei appearing blue while the trophoderm cell nuclei appeared pink (due to the combination of the blue and red). Finally, embryos were removed from this solution and were washed by placing them in absolute ethanol for 30 min at 4°C. Various controls were conducted to validate the differential staining technique. Controls consisted of omissions of TNBS, antibody or complement individually, or in combination, with the embryo solutions, resulting in the prevention of trophoderm cell lysis and subsequent blue staining of both trophoderm and inner cell mass cell nuclei.

Each embryo was individually mounted in a 5 μl drop of glycerol on a glass slide, and the two types of nuclei (trophoderm and inner cell mass) were visualized and counted by use of a fluorescent microscope (Nikon Diaphot- TMD) fitted with a UV2A filter combination having a 330–380 nm excitation filter and a 420 nm barrier filter. All nuclei of each embryo were counted independently by two operators, and the counts were averaged. Overall, counts of inner cell mass cell nuclei and trophoderm cell nuclei of the operators were not different (P>0.45 and P>0.77, respectively).

Image analysis

Embryos collected from the last six Meishan and last six Yorkshire donors were available for morphological analysis. A randomly selected portion of embryos from some donors were used in another experiment, but the remaining whole or partial litters were photographed for subsequent analysis (Nikon N2020 camera, loaded with Kodak TMX 100 black and white print film). Embryos in which differential staining was successfully accomplished (n = 35 Meishan and n = 33 Yorkshire) were subjected to image analysis as described by Youngs et al. (1987). Each photographic negative was illuminated using a ChromaPro 45 light box, and the image was conveyed to the computer using a Sony DXC-3000A video camera equipped with a Contax 60 mm Macro lens. The captured image of each embryo was then traced, and each image was evaluated with a Zeiss SEM-IPSA Image Analysis System (Zeiss-Kontron: IBAS version 2.0). The image analysis data were used to determine the thickness of the zona pellucida, and the areas of the perivitelline space, embryo proper, blastocoel and inner cell mass.

Statistical analyses

Data from the subset of embryos subjected to image analysis were analysed using zona pellucida thickness, perivitelline space area, area of embryo proper, blastocoel area and inner cell mass area as dependent variables. Data were analysed using the General Linear Model (GLM) procedure of the Statistical Analysis Systems (SAS, 1985). Breed effects were tested using

Results

The number of ovulations and the number of embryos recovered did not differ (P>0.05) between breeds (Table 1). Embryos collected from Meishan gilts on days 6.0–6.5 yielded the same range of developmental stages (compact morula, early blastocyst and blastocyst) as embryos collected from Yorkshire gilts on days 5.5–6.0. Not all attempts at differential staining were successful, as many compact morulae yielded only pink nuclei and some other embryos became fragile and the nuclei were disrupted. In the latter case, these embryos were excluded from the analysis to avoid influencing biological interpretation of the data because of methodological difficulties. Differential staining was successfully accomplished in 94 embryos from each breed (Fig. 1) and was not affected by breed of embryo (P>0.10). Image analysis demonstrated no breed differences at any of the embryonic stages examined in the thickness of the zona pellucida, or in the area of the perivitelline space, blastocoel, embryo proper and inner cell mass (Table 2).

Breed differences were observed in the pattern of embryonic growth from the compact morula to the blastocyst stage (Fig. 2). The total number of cells of Meishan embryos increased (P<0.01) from the compact morula to the early blastocyst and again from the early blastocyst to the blastocyst stage (P<0.01). In contrast, the total number of cells of Yorkshire embryos remained relatively constant from the compact morula through the early blastocyst stage but exhibited a marked
Table 2. Morphological characteristics of embryos from Meishan and Yorkshire gilts

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Meishan</th>
<th>Yorkshire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compact morula (n = 13)</td>
<td>Early blastocyst (n = 12)</td>
</tr>
<tr>
<td>Thickness of zona pellucida (µm)</td>
<td>10.58 ± 0.51</td>
<td>10.65 ± 0.87</td>
</tr>
<tr>
<td>Area of perivitelline space (µm²)</td>
<td>4443 ± 265</td>
<td>3276 ± 510</td>
</tr>
<tr>
<td>Area of embryo proper (µm³)</td>
<td>9883 ± 679</td>
<td>10 896 ± 351</td>
</tr>
<tr>
<td>Area of blastocoeI (µm²)</td>
<td>—</td>
<td>3474 ± 351</td>
</tr>
<tr>
<td>Area of inner cell mass (µm³)</td>
<td>—</td>
<td>2490 ± 836</td>
</tr>
</tbody>
</table>

*Data were obtained through image analysis, and values presented are least squares mean ± SEM. No differences were observed in any of the characteristics measured (P > 0.1).

![Fig. 2. Growth patterns (number of nuclei counted per embryonic stage) of compact morulae, early blastocysts and blastocysts of (□) Meishan and (■) Yorkshire gilts on which image analysis was performed. Each bar represents the least squares mean ± SEM of the number of cells in embryos at each developmental stage. The number of embryos used to generate the mean is indicated inside each bar. Values with different letters are significantly different (P < 0.01) within a breed in the number of total cells from one developmental stage to the next. Asterisks denote differences (P < 0.05) between breeds for that developmental stage.](image)

increase (P < 0.01) from the early blastocyst to the blastocyst stage. By the blastocyst stage, the total number of cells in Meishan embryos differed (P < 0.05), and blastocysts from Meishan gilts had approximately 11 fewer cells than did Yorkshire blastocysts. The reduction in the total number of cells observed in Meishan blastocysts was due entirely to a decrease in the number of trophoderm cells (44.1 ± 2.71 versus 52.55 ± 3.68; P < 0.05) and not to a difference in the number of inner cell mass cells (10.80 ± 1.46 versus 13.63 ± 2.01; P > 0.10) in Meishan versus Yorkshire blastocysts, respectively.

As the number of cells of the inner cell mass increased, the number of trophoderm cells in Meishan embryos accumulated more slowly (y = 1.40x + 19.25; r² = 0.77) than those of Yorkshire embryos (y = 2.82x + 16.18; r² = 0.83) resulting in regression lines (Fig. 3) with different (P < 0.02) slopes. The inner cell mass cell to trophoderm cell ratio increased in Meishan embryos from the compact morula to the early blastocyst stage (0.29 and 0.36, respectively) and then decreased at the blastocyst stage (0.25). Yorkshire embryos demonstrated a different pattern of growth from Meishan embryos with a continuous decrease in the inner cell mass cell to trophoderm cell ratio from the compact morula (0.32) to the early blastocyst (0.30) and blastocyst (0.25) stages of development.

Discussion

Although it is known that embryos from Meishan pigs contain fewer cells than do contemporary Yorkshire embryos throughout the preimplantation period (day 6: Youngs et al., 1993; and day 12: Anderson et al., 1993; Youngs et al., 1994), the present study is the first to report the specific cell type(s) involved. To accomplish this goal, we modified a differential staining technique (originally adapted for human embryos) that enabled the number of inner cell mass and trophoderm cells comprising...
Meishan and Yorkshire embryos to be quantified and compared. The embryonic developmental stages observed in this experiment (compact morula, early blastocyst and blastocyst) were comparable to those found by other investigators on the same days of early gestation in the pig (Heuser and Streeter, 1929; Papaioannou and Ebert, 1988; te Kronnie and de Boer, 1993). In addition, image analysis data provided corroboration of similarities in morphology between Meishan and Yorkshire embryos at each developmental stage, consistent with previous findings (Youngs et al., 1993). Furthermore, the number of cells comprising individual embryos from the compact morula to the blastocyst stages of development were in the range of those reported previously for pig embryos by other researchers (Papaioannou and Ebert, 1988; te Kronnie and de Boer, 1993; Raff et al., 1995).

These data demonstrated that the lower number of cells observed in Meishan versus Yorkshire blastocysts was predominantly due to fewer trophectoderm cells. In addition, breed differences were observed in the pattern of embryonic development from the compact morula to the blastocyst stage. As embryos developed from the compact morula to the early blastocyst stage, both the inner cell mass cell and trophectoderm cell populations increased in Meishan embryos. In contrast, no increases were observed between these stages in Yorkshire embryos. From the early blastocyst to the blastocyst stage, however, patterns of embryonic cell growth were similar in both Meishan and Yorkshire embryos, as the only observed change was an increase in the number of trophectoderm cells. Although the number of Yorkshire compact morulae was limited, data from the present study are consistent with those of Heuser and Streeter (1929), who reported that the increase in the total number of cells observed from day 5 to day 6 for pig embryos reflected increases in smaller and more flattened outer cells (that is, trophectoderm cells).

In a number of studies performed in our laboratory over a period of years, we have consistently found a reduced total number of cells in Meishan compared with Yorkshire (or white crossbred) embryos. Meishan early blastocysts have fewer cells than do Yorkshire early blastocysts (Youngs et al., 1993), and Meishan embryos possess fewer cells than Yorkshire embryos on day 12 following natural mating (Anderson et al., 1993) or embryo transfer (Youngs et al., 1994). However, data on the number of cells contained by day 7–9 Meishan and Yorkshire embryos have not been collected owing to limitations of currently available technologies (that is, differential staining and DNA analysis). During our refinement of the differential staining technique we found that it was very difficult to count >200 cells (that is, embryos beyond day 7 of gestation). Furthermore, DNA analysis is not sufficiently sensitive to assess DNA in individual embryos before day 10 of gestation. Recently, however, we have analysed day 10.5 blastocysts of Meishan and Yorkshire gilts and found that, consistent with our observations on day 6 and day 12 embryos, Meishan embryos contained less DNA than did Yorkshire embryos (S. P. Ford, unpublished). In addition, Wilson et al. (1995) demonstrated that the mitotic rate (as measured by proliferating cell nuclear antigen) of trophectoderm cells was significantly lower in day 11.5 Meishan versus Yorkshire blastocysts. Thus, the lower number of trophectoderm cells observed in day 12 Meishan embryos seems to result from both a slower mitotic rate and a smaller initial population of trophectoderm cells at the time of blastocyst formation.

Data on the comparative growth rate of preimplantation embryos from Meishan and European pig breeds have been collected in other laboratories. Bazer et al. (1988) reported that Meishan embryos were smaller than Large White embryos on day 8 but were larger than Large White embryos on days 10–12. In contrast, Wilmut et al. (1992) found no difference in the size or developmental stage of Meishan and European pig embryos collected 18–21 h after the estimated time of ovulation. The results of the present study are difficult to compare directly with those of Bazer et al. (1988) and Wilmut et al. (1992) because of asynchrony between breeds in the estimated time of ovulation and, hence, the time of embryo collection.

Had the Meishan embryos in the present study been collected several hours later than Yorkshire embryos, similar results may have been obtained. In several studies, however, no obvious breed differences in the time of ovulation have been observed between our Meishan and Yorkshire females (Anderson et al., 1993; Youngs et al., 1993, 1994).

Although experiments are needed to test the hypothesis, we propose that events occurring during early embryogenesis directly influence embryonic survival and litter size in the Meishan breed. Meishan embryos with a reduced number of trophectoderm cells (present study) apparently give rise to day 12 embryos that possess fewer cells and contain less oestriadiol (Anderson et al., 1993) than do embryos from European pig breeds. A reduced embryonic oestriadiol secretion presumably results in a more gradual change in uterine environment that is more conducive to embryonic survival (Pope, 1992). Furthermore, Meishan embryos elongate from a reduced total number of cells (Youngs et al., 1994) and develop into conceptuses that contain approximately 50% as many cells and are about 70% as long on day 14 as Yorkshire embryos (Wilson et al., 1995). These observations are biologically consistent with numerous other studies reporting a reduction in conceptus size for Meishan versus European pig breeds at day 30 (Ashworth et al., 1990, 1992; Ford et al., 1994) and day 90 of gestation (Rivera et al., 1994), as well as at term (Biesen et al., 1995).

The number of trophectoderm cells present at elongation may dictate the maximum length of an embryo and, thus, the space within the uterine horn it ultimately occupies. It has been suggested that each fetus in European breeds of pig requires a certain length of uterine horn to survive (Knight et al., 1977; Dziuk, 1985; Wu et al., 1989). Furthermore, about 10% of prenatal mortality in domestic pigs occurs after day 30 of gestation as a result of fetal overcrowding (Bazer et al., 1969; Fenton et al., 1972; Dziuk, 1985). Bazer et al. (1988) reported no breed differences in uterine horn length and width, or in endometrial surface area, on day 30 of gestation between Meishan and Large White gilts. However, they demonstrated that embryo survival and average litter size favoured Meishan over Large White gilts, suggesting that conceptus factors rather than uterine morphology played an important role in embryonic and fetal survival. Collectively, these data suggest that a reduction in the number of trophectoderm cells during early embryogenesis may result in a reduced placenta size and an increased litter size in prolific breeds such as the Meishan.
The authors thank L. K. Christenson and C. Hertz for technical expertise. M. Shell and T. Randall for animal care, and D. Johnston for preparation of this manuscript. Support from the Japanese Ministry of Agriculture, Forestry and Fisheries and the Iowa State University Biotechnology Council is gratefully acknowledged. Journal paper number J-16336 of the Iowa Agricultural and Home Economics Experiment Station (projects 2443, 2444, and 2942), a contribution to regional research project W-171 Germ Cell and Embryo Development and Manipulation for the Improvement of Livestock.

References


Ford SP, Christenson LK, Rivera RM and Youngs CR (1994) Inhibitory effects of the Meishan uterus on day 30 conceptuses Biology of Reproduction 48 (Supplement 1) 175 (Abstract)


Gardner RJ, Papaioannou VE and Barton SC (1973) Origin of the oecoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass Journal of Embryology and Experimental Morphology 30 561–572


Heuser CH and Streeter GL (1929) Early stages in the development of pig embryos, from the period of initial cleavage to the time of the appearance of limb-buds Contributions to Embryology 20 3–29


Papaioannou VE and Ebert KM (1986) The preimplantation pig embryo: cell number and allocation to trophoderm and inner cell mass of the blastocyst in vivo and in vitro Development 102 793–803


te Kronnie G and de Boer P (1993) Embryonic development in the pig up to the 64-cell stage, with reference to DNA replication and cell cycle times from the third cleavage division Theriogenology 39 919–928


