Regulation of leukocyte interleukin 2 and interleukin 2 receptor gene expression by rabbit blastocoelic fluid

D. Bergeron¹, M. Audette² and R. D. Lambert¹*

¹Departments of Obstetrics and Gynecology, Laval University and Ontogénie et Reproduction, CHUL Research Center, Ste-Foy, Québec, Canada G1V 4G2; and ²Endocrinologie Moléculaire Research Unit, CHUL Research Center, Ste-Foy, Québec, Canada G1V 4G2

The mechanisms underlying the inhibition of lymphocyte proliferative response by rabbit blastocoelic fluid collected on day 12 of embryonic development were investigated. Treatment with blastocoelic fluid, even in the presence of concanavalin A, maintains lymphocytes in a quiescent state by preventing cell entry into the S phase of the cell cycle. Gene expression of interleukin 2 receptor is completely blocked by treatment with blastocoelic fluid as are the secretion and gene expression of interleukin 2. Addition of interleukin 2 to prestimulated interleukin 2 receptor positive lymphocytes failed to downregulate the expression of high-affinity interleukin 2 receptor and completely abolished the embryonic fluid-mediated inhibitory effect on [³H]thymidine incorporation. Taken together, these results suggest that embryonic fluid has differential inhibitory effects, depending on the activation state of the lymphocytes. Nevertheless, inhibition of interleukin 2 and interleukin 2 receptor expression by embryonic fluid restrains immune cell activity and therefore can be implicated in the survival of the fetal semi-allograft.

Introduction

Implantation of embryos in certain mammals, such as humans and rabbits, involves cell fusion between the embryo and the uterine endometrial cells, which favours embryo–uterine exchanges (Schlafke and Enders, 1975; Morin et al., 1992). A significant accumulation of leukocytes in the newly formed decidua has been demonstrated (Clark et al., 1984) in some animals (including rats, mice and humans; see Stewart, 1991, for a review), leading to close contact between the embryonic trophoblast and the maternal immune system. Thus, despite the fact that trophoblastic MHC class I antigens are apparently not in direct contact with maternal blood (Redman et al., 1984; Hunt et al., 1988), embryos are exposed to maternal immune cells in the decidua, such as natural killer (NK)-like cells (Croy et al., 1985; Gambel et al., 1985), which have been associated with spontaneous abortions in mice (de Fougerolles and Baines, 1987; Gendron and Baines, 1988; Zheng et al., 1993). Even if they are naturally resistant to NK cells in vitro, human and mouse trophoblastic cells have been shown to be killed by lymphocyte-activated killer (LAK) cells (Drake and Head, 1989; King and Loke, 1990). Because the uterus is, therefore, a potentially hostile environment for the embryo, immunological rejection could be expected.

It is our hypothesis that, to avoid such a disastrous fate, the embryo must locally regulate the maternal immune system. This could be accomplished in several ways: local accumulation of suppressor T cells (Clark et al., 1984), an absence of major histocompatibility complex (MHC) class II antigens (Redman et al., 1984; Ellis et al., 1986), the presence of truncated MHC class I antigen on trophoblast cells (Ellis et al., 1990), and local production of immunoregulatory factors, such as the ovine trophoblast protein-1 (OTP-1) (Newton et al., 1989; Niwano et al., 1989; Fillion et al., 1991). A local rather than a systemic immunosuppression has been demonstrated (Chaoat and Monnot, 1984; Pandian et al., 1988; Lambert et al., 1989a). Suppressive activity affects the functional activities of NK cells (Kolb et al., 1984), cytotoxic cells (Chaoat and Kolb, 1985) and macrophages (Lu et al., 1984). The inhibition of the proliferative response to lectins, such as phytohaemagglutinin (PHA) and concanavalin A, by soluble immunosuppressive factors obtained from embryo culture supernatant has also been documented (Kolb et al., 1984; Chaoat and Kolb, 1985; Daya and Clark, 1986a; Watson, 1990).

Although action of immunosuppressants specific for gestation has been described in detail, their mechanisms of action remain elusive. Blastocoelic fluid is known to have an immunosuppressive activity (Pandian et al., 1988) that is modulated during rabbit embryonic development with peak activity on days 12–13 (Lambert et al., 1989a). We demonstrate that this fluid, taken at day 12 of rabbit embryonic development, exerts an antiproliferative effect on lymphocytes by inhibiting interleukin 2 (IL-2) and interleukin 2 receptor (IL-2R) expression at the mRNA and protein levels.

Materials and Methods

Animals

Mature New Zealand white rabbits weighing 3.0–3.5 kg were housed separately and given free access to food and
water. The does in oestrus were identified by the presence of oedematous and purple vulvae and chosen for the experiments. The day of oestrus was counted as day 0. On that day, the does were mated and then injected i.v. with 75 IU human chorionic gonadotrophin (hCG; APL: Ayerst Laboratories, Montréal) to ensure ovulation.

Collection of rabbit blastocoelic fluid

The procedure for collecting blastocoelic fluid is as described by Lambert et al. (1989b). Briefly, at day 12 of pregnancy, the rabbits were killed by an overdose of Euthanyl (MTC Pharmaceuticals Ltd, Cambridge, Ontario) and the uteri were removed. Blastocoelic fluid from rabbits at day 12 of pregnancy was then aspirated by a syringe from the cavities of the embryos and centrifuged (1650 g for 10 min). Supernatants from day-12 blastocoelic fluid from the same female were pooled and kept frozen at −20°C until use.

Preparation of lymphocytes

Rabbit blastocoelic fluid taken at day 12 of embryonic development is known to prevent [3H]thymidine uptake by heterologous (human) or autologous lymphocytes (Pandian et al., 1988; Lambert et al., 1989a). Because the effect of day-12 blastocoelic fluid was the same in heterologous conditions (rabbit day-12 blastocoelic fluid versus human lymphocytes) as in autologous conditions (day-12 blastocoelic fluid and lymphocytes from the same rabbit) and because human blood is easier to obtain, all experiments described here were conducted on human lymphocytes.

Blood from healthy volunteers was collected in sterile tubes containing heparin and diluted two-fold with sterile Hank’s balanced salt solution (HBSS) in 50 ml conical tubes (Falcon Beckton-Dickinson, Lincoln Park, NJ). Peripheral blood lymphocytes were prepared using Histopaque 1077 (Sigma, Mississauga, Ontario) density gradient. Histopaque (10 ml) was added to the bottom of the tube with a sterile Pasteur pipette. The tube was then centrifuged at 800 g for 20 min at room temperature. The peripheral blood lymphocytes collected at the interface were washed twice with HBSS and were then resuspended (2 × 10⁶ cells ml⁻¹) in RPMI 1640 containing glutamine, streptomycin (100 mg ml⁻¹), and penicillin (100 IU ml⁻¹) (all from Flow Laboratories, Montréal), and 10% fetal bovine serum (FBS).

Cell cultures

The cells (2 × 10⁵ in 100 µl of cell suspension) were placed in a 96-well flat-bottomed microtitre plate (Falcon) with 25 µl of concanavalin A (5 µg ml⁻¹ final concentration), 50 µl day-12 blastocoelic fluid or RPMI 1640 (negative control) and 50 µl RPMI 1640 containing FBS. The final concentration of FBS was 6.7% (v/v). The plates were incubated at 37°C under a humidified atmosphere and 5% CO₂ for 48 h. Ten microlitres of 0.02 mCi [3H]thymidine ml⁻¹ (2.0 Ci mmol⁻¹; New England Nuclear, Lachine, Québec) was then added, and the incubation was continued for a further 18–24 h. The cells were harvested on glass fibre filters (Wallac, Turku, Finland) with a multiple cell harvester (Skatron, Lier, Norway), and the filter discs corresponding to each well were placed into a scintillation vial with 3 ml Formula 963 (aqueous scintillation cocktail; DuPont, New England Nuclear, Lachine, Quebec). The incorporated radioactivity was then evaluated by liquid scintillation counter and calculated as described by Pandian et al. (1988) and Lambert et al. (1989a). For northern blot analysis and IL-2 assays, the cells were cultured in 24-well culture plates (900 µl per well; 400 µl cell suspension, 100 µl concanavalin A, 200 µl day-12 blastocoelic fluid or RPMI, and 200 µl RPMI containing FBS to a final FBS concentration of 6.7%) and treated as described above.

The cells used in the prestimulation studies were cultured in 24-well flat-bottomed culture plates (8 × 10⁶ cells in a total volume of 900 µl) with 5 µg concanavalin A ml⁻¹. After incubating (37°C, 5% CO₂) for 72 h, the cells were harvested, washed twice in RPMI, and subcultured in 96-well flat-bottomed culture plates as described above, either with or without concanavalin A and day-12 blastocoelic fluid or RPMI. [3H]thymidine (10 µl of a 0.02 mCi ml⁻¹ solution) was added 18 h before counting by liquid scintillation.

Flow cytometry studies

Analysis of DNA content. Treated lymphocytes from 96-well culture plates were transferred into 1.5 ml polypropylene tubes and centrifuged at 600 g for 5 min, washed with PBS (pH 7.2) and then fixed in PBS-70% (v/v) ethanol. Fixed cells were kept at −20°C. Before analysis, the cells were centrifuged (600 g for 2 min), washed with PBS, and incubated for 30 min at 37°C in PBS containing RNase (40 U ml⁻¹ per 10⁶ cells) (Boehringer–Mannheim, Mannheim). The cells were centrifuged (600 g for 5 min) and resuspended in 500 µl PBS containing the DNA dye, propidium iodide (50 µg ml⁻¹) (Sigma), and incubated on ice for 30 min. Analysis of DNA content was performed using a Coulter Epics 753 pulse counter (Coulter, Hialeah, FL). The cells were excited at 488 nm (400 mW) and red fluorescence, measuring total DNA, was recorded over 590 nm. The percentages of cells in G0/G1, S and G2/M phases were calculated from the resulting DNA content histograms using the PAM-1 program (Coulter). Debris and doublets were eliminated by plotting integrated red fluorescence and by setting a bitmap around the events on the diagonal (G0/G1, S and G2/M singlets) (Dressler and Bartow, 1989). Chicken red blood cells (2.5 pg DNA per diploid nucleus), trout red blood cells (5.5 pg DNA per diploid nucleus) and human white blood cells (7.0 pg DNA per diploid nucleus) were used as reference standards (Tiersch et al., 1989).

IL-2R membrane expression studies. Lymphocytes harvested from 96-well culture plates were washed twice and resuspended in 300 µl PBS (pH 7.4) before being incubated with 5 µl fluorescein isothiocyanate (FITC)-conjugated mouse (IgG1a) antihuman IL-2R α (4°C, 15 min) antibody (Coulter) or FITC-conjugated mouse IgG1a (isotypic control). Fluorescence was analysed by flow cytometry (Coulter Epics C cell sorter system).
Northern blot analysis

The lymphocytes were recovered from the 24-well tissue culture plates, pooled, and pelleted by centrifugation (800 g for 15 min) in 50 ml polystyrene tubes (Falcon). Total RNA was extracted using the method of Chomczynski and Sacchi (1987) and the samples were subsequently analysed by blot hybridization using Hybond-N (Amersham, Oakville, Ontario) as transfer membrane. cDNAs encoding human IL-2 (obtained from American Tissue Culture Collection ATCC: no. 67618), human IL-2Ra (generously provided by W. C. Greene, Gladstone Institute, San Francisco, CA), or human GAPDH were digested with the appropriate restriction enzymes and the purified inserts were labelled with the Quick Prime kit (Pharmacia, Baie d’Urfe, Quebec) according to the manufacturer’s procedure with α32P dCTP (3000 Ci mmol 1−1, Amersham). The probes were purified as described by Chapdelaine et al. (1990).

IL-2 assays

Supernatants of treated or control cells (cultured in 24-well tissue culture plates) were taken at various times and kept at −20°C until use. Interleukin 2 was assayed with an ELISA kit detecting the human cytokine (Cayman Chemical Company, Ann Harbor, MI) according to the manufacturer’s guidelines.

Treatment with cytokines

Human recombinant IL-1α, IL-4, IL-6, and tumour necrosis factor α (TNF-α) were purchased from R&D systems and IL-2 (2 × 10⁶ U mg−1) from Boehringer–Mannheim. Prestimulated cells were washed twice in RPMI and resuspended in RPMI–FBS (2 × 10⁵ cells ml−1) before being subcultured with concanavalin A alone or in combination with day-12 blastocoelic fluid. Recombinant cytokines were immediately added, and the incubation was continued for 24 h. Six hours after the beginning of the subculture, the cells were labelled with [3H]thymidine as described. All the cytokines were tested simultaneously in the same assay using the same medium and the same peripheral blood lymphocytes for every cytokine.

Statistical analysis

Statistical treatments were performed using Dunčan–Kramer multiple comparison tests or paired-sample t test, as indicated.

Results

Antiproliferative effect of day-12 blastocoelic fluid on human peripheral blood lymphocytes

Table 1 presents the results obtained by culturing human peripheral blood lymphocytes with concanavalin A, concanavalin A plus day-12 blastocoelic fluid, or culture medium alone (nonstimulated cells) and demonstrates the strong inhibitory effect of day-12 blastocoelic fluid (95%) on the concanavalin A-dependent T-cell proliferation. This inhibition was further characterized by undertaking cell cycle studies by flow cyto-

<table>
<thead>
<tr>
<th>Treatment</th>
<th>[3H]thymidine incorporation (c.p.m.)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con A</td>
<td>19 989 ± 1297</td>
<td>—</td>
</tr>
<tr>
<td>Con A + day-12 blastocoelic fluid</td>
<td>1023 ± 395</td>
<td>95 ± 1</td>
</tr>
<tr>
<td>Nonstimulated</td>
<td>1195 ± 558</td>
<td>—</td>
</tr>
</tbody>
</table>

Con canavalin A and concanavalin A + day-12 blastocoelic fluid: n = 32; nonstimulated cells: n = 14.

Means ± SEM.

% inhibition = (c.p.m. ConA − c.p.m. Con A + day-12 blastocoelic fluid) / c.p.m. ConA × 100.

Fig. 1. Cell-cycle analysis of lymphocytes treated with day-12 blastocoelic fluid. Cells were evaluated for their DNA content after incubation for 72 h in 96-well culture plates. The percentage of cells in G0/G1 (□), S (■), and G2/M (□) is shown. Each histogram represents the mean ± SEM of four experiments performed in triplicate. *P < 0.01, significantly different from concanavalin A (ConA) values. **P < 0.01, significantly different from nonstimulated (NS) values as determined by Dunčan–Kramer multiple comparison test.

metric analysis of DNA content in concanavalin A-stimulated cells treated with day 12 blastocoelic fluid, concanavalin A-stimulated and nonstimulated cells. More than 80% of the concanavalin A/day-12 blastocoelic fluid-treated cells remained
in the G0/G1 phase (Fig. 1), suggesting that the addition of day-12 blastocoelic fluid to the culture maintains the lymphocytes in a quiescent state, despite the continuous presence of concanavalin A throughout the 72 h treatment. A significant inhibition of cell cycle progression (P < 0.01) is also reflected in the S and G2/M phases, where only 16.7 ± 0.7% and 0.8 ± 0.2% of the cell population, respectively, were propidium iodide-labelled in the concanavalin A/day-12 blastocoelic fluid-treated cells in contrast to 38.9 ± 2.5% and 13.0 ± 1.0%, respectively, for concanavalin A-stimulated cells. However, despite the strong inhibitory effect, concanavalin A/day-12 blastocoelic fluid-treated cells progressed significantly in the cell cycle compared with nonstimulated cells for the G0/G1 phase (82.4 ± 0.8% versus 90.1 ± 0.9%; P < 0.01) and S phase (16.7 ± 0.7% versus 8.5 ± 1.3%; P < 0.01). There was, however, no significant difference for the G2/M phase.

Day-12 blastocoelic fluid negatively affects IL-2 and IL-2R gene expression

It is known that IL-2Rα appears at the cellular surface after T-cell activation (Leonard et al., 1985; Altman et al., 1990) and

Fig. 2. Expression of interleukin 2 (IL-2) receptor on day-12 blastocoelic fluid-treated cells. Peripheral blood lymphocytes were incubated for 72 h with and without concanavalin A and day-12 blastocoelic fluid in 24-well tissue culture plates. The cells were recovered and membrane expression of IL-2Rα was determined by flow cytometry or northern blot analysis after extraction of RNA. (a) IL-2R membrane expression was evaluated by direct fluorescence with an anti-IL-2 receptor antibody labelled with fluorescein isothiocyanate. Non-specific fluorescence was assessed by the use of an isotypic mouse immunoglobulin labelled with the same fluorochrome. The percentage of positive cells for IL-2R membrane expression is shown as percentage fluorescence. Each histogram represents the mean ± SEM of three experiments performed in duplicate. *P < 0.001, significantly different from concanavalin A values, as determined by Duncan–Kramer multiple comparison test. (b, c) Total mRNA (10 µg per lane) was hybridized with ³²P-labelled IL-2R or GAPDH probes and exposed at -80°C for 24 h (GAPDH) or 96 h (IL-2R).

Fig. 3. Interleukin 2 secretion by cells treated with (○) concanavalin A; (●) concanavalin A + day-12 blastocoelic fluid; or (■) without concanavalin A. Culture supernatants collected at various times were diluted 1:50 with RPMI-1640, frozen at −20°C and assayed for secreted interleukin 2. Each point represents the mean ± SEM of three experiments performed in duplicate. A total of eight different day-12 blastocoelic fluid samples were tested on the lymphocytes of three donors. *P < 0.05; **P < 0.01, significantly different from concanavalin A values as determined by Duncan–Kramer multiple comparison test.
that interaction between IL-2 and its receptor is necessary for the progression of activated T-cells through the cell cycle and their subsequent proliferation (Cantrell and Smith, 1984). Day-12 blastocoelic fluid treatment prevents IL-2Ra membrane expression on lymphocytes (Fig. 2a), which may reflect the quiescent state of concanavalin A/day-12 blastocoelic fluid-treated cells observed in Fig. 1. As there was no cellular IL-2Ra, no cell-cycle progression, and no proliferation in concanavalin A/day-12 blastocoelic fluid-treated cells compared with concanavalin A cells, an attempt was made to determine whether IL-2Ra gene expression, normally induced by concanavalin A, was maintained quiescent by day-12 blastocoelic fluid treatment. As expected, no IL-2Ra mRNA could be detected in concanavalin A/day-12 blastocoelic fluid-treated cells as determined by northern blot analysis (Fig. 2b). The double hybridization is due to some alternative splicing, and the lower band represents a transcript lacking 216 bases and is not involved in the production of an active protein (Leonard et al., 1984). Because the expression of IL-2Ra is known to be regulated by IL-2 (Reem and Yeh, 1984; Welte et al., 1984), the low IL-2Ra expression was correlated with IL-2 gene expression by measuring IL-2 production of concanavalin A/day-12 blastocoelic fluid-treated lymphocytes. Production of IL-2 was significantly inhibited ($P < 0.01$) by day-12 blastocoelic fluid (Fig. 3).

The results confirmed that day-12 blastocoelic fluid prevents IL-2 gene expression (Fig. 4) and suggest a rapid inhibitory effect of day-12 blastocoelic fluid taking place before 6 h, as shown by IL-2 secretion (Fig. 3). This is also the minimal time required to detect mRNA encoding IL-2 in concanavalin A-stimulated cells (D. Bergeron, M. Audette and R. D. Lambert, unpublished).

Exogenous IL-2 and prevention of inhibition by day-12 blastocoelic fluid

The lymphocytes were prestimulated with concanavalin A alone for 72 h to determine whether the presence of IL-2 could neutralize the day-12 blastocoelic fluid-mediated inhibition. This experimental condition was based on the demonstration (Cantrell and Smith, 1984) that lymphocyte proliferation peaks when a maximum of cell surface IL-2R expression is attained, which is 72 h after lectin activation (Leonard et al., 1985; Smith, 1988). This prestimulation induces a high membrane expression of IL-2R (68 ± 13%; D. Bergeron, M. Audette and R. D. Lambert, unpublished). Although it strongly inhibits $[^{3}H]$-thymidine incorporation (Fig. 5a), day-12 blastocoelic fluid did not completely abolish cell proliferation (Fig. 5b) and failed to decrease IL-2R membrane expression (64 ± 4%; D. Bergeron, M. Audette and R. D. Lambert, unpublished). Therefore, day-12 blastocoelic fluid does not exert its inhibitory activities by downregulating IL-2R expression.

The next aim was to determine whether day-12 blastocoelic fluid interfered with proliferative transduction signals emanating from IL-2R after interaction with IL-2. The inhibitory activity of day-12 blastocoelic fluid was totally prevented by the addition of 20 U human recombinant IL-2 ml$^{-1}$ (Fig. 6), indicating that its receptor was still functional despite the presence of day-12 blastocoelic fluid. Interleukin 1α, IL-4, IL-6 and TNF-α are also known to play a role in lymphocyte proliferation (Durum et al., 1985; Paul and Ohara, 1987; Lotz et al., 1988). None of these cytokines could totally prevent the inhibitory effect of day-12 blastocoelic fluid in the range of concentrations used (Fig. 7).
The strong inhibitory effect of day-12 blastocoelic fluid cannot be attributed to cytotoxicity because, as stated by Pandian et al. (1988), lymphocytes treated with day-12 blastocoelic fluid showed a viability higher than 90% and pretreatment of lymphocytes with day-12 blastocoelic fluid for 24 h does not alter their ability to proliferate in response to concanavalin A when the blastocoelic fluid is removed (Pandian et al., 1988). In addition, in the present study it was demonstrated that preactivated (IL-2R positive) lymphocytes responded to IL-2, despite the presence of day-12 blastocoelic fluid. The results are not due to a cytotoxic combination of FBS with day-12 blastocoelic fluid, as a strong inhibition of $[^3H]$thymidine incorporation is still observed in a chemically defined serum-free medium (D. Bergeron, M. Audette and R. D. Lambert, unpublished).

In this study, we demonstrated that day-12 blastocoelic fluid prevented lymphocytes from undergoing cell cycling. The differences observed in the proportions of concanavalin A/day-12 blastocoelic fluid cells in G0/G1 and S phases compared with nonstimulated cells are probably due to the fact that some of the cellular events that occur after concanavalin A interaction with the cell surface occur before day-12 blastocoelic fluid-mediated inhibition takes place, which suggests that cells treated with day-12 blastocoelic fluid are stopped in their transition from G0/G1 into S phase. Because IL-2 interaction with IL-2Raβ (high affinity IL-2R) is necessary for such a transition to occur (Cantrell and Smith, 1984), we postulate that day-12 blastocoelic fluid hinders the proliferation of treated lymphocytes by preventing the appearance of mRNA encoding IL-2Ra, and therefore its membrane expression, indirectly by inhibiting IL-2 secretion/gene expression. All the results confirm the validity of this hypothesis.

The observation that IL-2 can reverse the inhibitory effect of day-12 blastocoelic fluid when IL-2Ra are present on the cell surface of leukocytes also supports this interpretation. However, IL-2 present in the incubation medium after a pre-stimulation for 12 or 24 h fails to reverse the inhibitory effect of day-12 blastocoelic fluid (D. Bergeron, M. Audette and R. D. Lambert, unpublished). Given that membrane IL-2Ra expression is not initiated until 15 h of lectin stimulation (Leonard et al., 1985), closely parallels $[^3H]$thymidine uptake (Cantrell and Smith, 1984), and peaks at 72 h after lectin activation (Leonard et al., 1985; Smith, 1988), we suggest that day-12 blastocoelic fluid may be acting on IL-2Ra gene expression or IL-2Ra membrane expression, independently
from IL-2 gene transcription. The fact that day-12 blastocoelic fluid does not prevent expression of the gene encoding GAPDH indicates that a day-12 blastocoelic fluid suppressive effect is not due to a nonspecific inhibition of the transcription machinery, and is another indication that this suppression is not the result of a cytotoxic effect.

Interleukin 2 can be a mediator of pregnancy failure; indeed, in early pregnancy, NK-like cells are present in relatively large quantities in the decidua (Croy et al., 1985; Gambel et al., 1985) and seem to be implicated in spontaneous abortions (de Fougerolles and Baines, 1987; Gendron and Baines, 1988). Granulated metrial gland cells, found in rodents (Croy, 1990),
and large granulated lymphocytes, found in humans (King and Loke, 1991), are present in early decidua, both of which are related morphologically, phenotypically and functionally to NK cells (Croy, 1990; King and Loke, 1990; Lin et al., 1991). Although several studies establish that naive NK cells cannot kill trophoblastic cells in vitro (Croy et al., 1985; Drake and Head, 1989; King et al., 1992), King and Loke (1990) observed that IL-2 converts decidual large granulated lymphocytes into more classic NK cells and that such a treatment greatly increases the large granulated lymphocyte lytic activity, including killing normal and malignant trophoblastic cells. It is not known whether lymphokine activated killer (LAK) cell generation occurs in vivo, but Lala et al. (1990) showed that activation of mouse maternal NK cells with IL-2 or indo-methacin administration, which reduces PGE₂ production and therefore promotes IL-2 synthesis, greatly increases the abortion rate of treated animals.

We propose that day-12 blastocoeal fluid serves as a potent regulator of cell proliferation/function in quiescent as well as activated immune cells in vivo, before the arrival of maternal suppressor cells in the implantation region (Lambert et al., 1989a). In addition, because inhibition of prestimulated cells mediated by day-12 blastocoeal fluid is reversible (D. Bergeron, M. Audette and R. D. Lambert, unpublished), this effect could be considered a transient inhibitor regulating the functions and proliferation of potentially harmful activated maternal lymphocytes coming in close contact with the placenta and the fetus via the blood circulation. Although the mechanism of action of day-12 blastocoeal fluid on pre-stimulated lymphocytes is unknown, it could affect an IL-2-independent proliferation pathway, as no IL-2 could be detected in the supernatant of prestimulated lymphocytes even during the first 48 h after subculture where proliferation occurs (D. Bergeron, M. Audette and R. D. Lambert, unpublished). Because IL-2-independent proliferation involves activation of protein kinase C (Takeshita et al., 1988), we hypothesize that inhibition by day-12 blastocoeal fluid inhibition occurs at or downstream from this kinase.

Day-12 blastocoeal fluid is not the only inhibitor of IL-2/IL-2R production. It has been demonstrated that rat amniotic fluid (Yoshimura et al., 1991) and pregnancy zone protein (Saito et al., 1990) inhibit IL-2 production without interfering with IL-2R membrane expression. Nicholas and Payani (1985) showed that retrolaplacental serum suppresses mixed lymphocyte reaction through an inhibition of IL-2 production. Yoshida et al. (1990) also found that this same type of serum can cause a reduction in IL-2R membrane expression on treated lymphocytes. As in the present study involving day-12 blastocoeal fluid, this inhibitory effect can be reversed by the addition of exogenous IL-2. Skibin et al. (1989) reported the inhibitory effects of a human factor released from the placental chorionic membrane that prevents the expression of IL-2R. In addition, hydatisiform mole extracts are known to suppress IL-2-induced proliferation of T-cells (Bennett et al., 1990).

The immunosuppressive properties of gestation-specific factors have been, in some cases, associated with their ability to bind IL-2 or IL-2R. Segerson and Libby (1990) provided experimental evidence that bovine uterine luminal protein suppresses lymphocyte proliferation by such a mechanism. Our results demonstrate that after treatment with day-12 blastocoeal fluid, IL-2 and IL-2R proteins are not expressed, thus eliminating the participation of immunosuppressive IL-2 or IL-2R binding proteins as the causal event in the inhibitory effect. This conclusion is supported by the fact that the IL-2R present at the surface of prestimulated cells can bind IL-2 and transduce proliferative signals despite the presence of day-12 blastocoeal fluid, ruling out the intervention of at least IL-2R binding proteins.

The physiological significance of the two-way day-12 blastocoeal fluid-mediated inhibition of lymphocytes could be of great relevance. Because day-12 blastocoeal fluid-mediated immunosuppression is transient, that is, modulated during the course of embryo–fetal development (Lambert et al., 1989a), the active factor(s) could prevent placentation transcription of the gene encoding IL-2 (and thus IL-2 secretion) before or during the migration of immunoregulatory cells to the decidua (Slapys and Clark, 1982) which, at a certain stage in pregnancy, are thought to replace the protective role of embryo–fetal immunosuppressive factor(s) (Lambert et al., 1989a). We propose that the active molecule(s) present in day-12 blastocoeal fluid, which does not act by cytotoxic means as the effect is completely reversible (Pandian et al., 1988), could participate in the survival of the fetal semi-allograft by preventing transcription of genes encoding IL-2 and IL-2R. Such a mechanism could thus prevent the accidental activation of lymphocytes located in the decidua that are potentially harmful to the fetus.

The authors thank R. Boulianne, P. Chapdelaine, and E. Gauthier for their very useful tips in plasmid preparation and northern blotting experiments; M. Belles-Isles and M. Dufour for help in cytometric determination of DNA content; and J. Kim and D. Castilaw for English editorial assistance. This work was supported by NSERC (R. D. Lambert), and a FRSC scholarship (M. Audette).

References

Altmann A, Coggeshall KM and Mustelin T (1990) Molecular events mediating T cell activation Advances in Immunology 48 227–361

Chauvat G and Monnot P (1984) Systemic active suppression is not necessary for successful allogeneic pregnancy American Journal of Reproductive Immunology 6 5–8

Croy BA (1990) Granulated metrial cells. Interesting cells found in the pregnant uterus American Journal of Reproductive Immunology 23 19–21

Daya S and Clark DA (1986b) Production of immunosuppressor factor(s) by preimplantation embryos American Journal of Reproductive Immunology and Microbiology 1 98–101

de Fougereolles AR and Baines MG (1987) Modulation of the natural killer cell activity in pregnant mice alters the spontaneous abortion rate Journal of Reproductive Immunology 11 147–153

Drake BL and Head JR (1989) Murine trophoblast can be killed by lymphokine-activated killer cells Journal of Immunology 142 9–14

Dressler LG and Bartow SA (1989) DNA flow cytometry in solid tumors: practical aspects and clinical applications Seminars in Diagnostic Pathology 6 55–82

Durum SK, Schmidt JA and Oppenheim JJ (1985) Interleukin 1: an immunological perspective Annual Review of Immunology 3 263–287

Ellis SA, Sargent IL, Redman CW and McMichael AJ (1986) Evidences for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line Immunology 59 595–601

Ellis SA, Palmer MS and McMichael AJ (1990) Human trophoblast and the choriocarcinoma cell line BeWo expresses a truncated HLA class I molecule Journal of Immunology 144 731–735

Grendon RL and Baines MG (1988) Infiltrating decidua natural killer cells are associated with spontaneous abortion in mice Cellular Immunology 113 201–267

King A and Locke YW (1990) Human trophoblast and JEG choriocarcinoma cells are sensitive to lysis by IL-2-stimulated decidual NK cells Cellular Immunology 129 435–448

Lala PK, Scodras JM, Graham CH, Lysayk JJ and Parhar RS (1990) Activation of maternal killer cells in the pregnant uterus with chronic indomethacin therapy, IL-2 therapy, or a combination therapy is associated with embryonic demise Cellular Immunology 127 368–381

Nicholas NS and Payani GS (1985) Inhibition of interleukin-2 production by retroviral serata: a possible mechanism for human fetal allograft survival American Journal of Reproductive Immunology 9 6–11

Reem GH and Yeh NH (1984) Interleukin 2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes Science 225 429–430

Saito S, Hashimoto H, Yonezawa K and Ichijo M (1990) Pregnancy zone protein inhibits production of interleukin-2 but does not affect interleukin-2 receptor expression on T cell activation Journal of Reproductive Immunology 17 115–126

Schlatte S and Enders AC (1975) Cellular basis of interaction between trophoblast and uterus at implantation Biology of Reproduction 12 41–65

