Regulation of reproductive seasonality in the red deer hind: oestradiol-dependent and -independent influences on the patterns of LH concentrations

L. M. Meikle* and M. W. Fisher†

AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New Zealand

The control of reproductive seasonality was studied in farmed adult red deer hinds that had been either ovarioctomized or ovarioctomized and oestradiol-treated (s.c. implants). The breeding season, delineated by progesterone secretion in intact hind herdmates, was characterized by high (mean 0.6, range 0.1–2.5 ng ml⁻¹ plasma) LH concentrations in ovarioctomized oestradiol-treated hinds. In contrast, during the non-breeding season plasma LH concentrations in these animals were significantly lower (mean 0.1, range 0–0.9 ng ml⁻¹ plasma). LH secretion in ovarioctomized untreated hinds also displayed a marked seasonal pattern, approximately the inverse of daily photoperiod (that is, a winter peak and summer trough). The pituitary LH response to 10 µg exogenous GnRH was also maximal during the breeding season in ovarioctomized (mean 7.4, range 1.2–14.6 ng ml⁻¹) and ovarioctomized, oestradiol-treated (mean 16.4, range 1.4–32.3 ng ml⁻¹) hinds. These results indicate that LH secretion in the hind is regulated by both steroid-dependent and -independent mechanisms.

Introduction

Our understanding of the mechanisms that control reproductive seasonality in female farm animals has largely been derived from studies in ewes (see Karsch et al., 1984). However, domestication may alter some reproductive parameters, including seasonality (see Setchell, 1992). Thus the underlying physiological mechanisms in sheep may differ from those in other species. For example, throughout seasonal anoestrus, the ovarioctomized ewe retains the ability to produce a preovulatory-like LH surge in response to exogenous oestradiol (Land et al., 1976; Howland et al., 1978; Goodman et al., 1981; Hareshign and Friman, 1983), but it has been demonstrated that this response is absent during some stages of anoestrus in ovarioctomized red (Meikle and Fisher, 1990) and fallow (Jabbour et al., 1992) deer. Furthermore, there is limited evidence of a marked seasonal pattern of LH secretion in ovarioctomized red (Meikle and Fisher, 1990) and fallow (G. W. Asher, unpublished data) deer. These patterns are not as clearly evident in ovarioctomized ewes (Legan et al., 1977; Goodman et al., 1982; Webster and Hareshign, 1983: Robinson et al., 1985). Although there are some important breed differences in both the negative and positive effects of oestradiol on LH secretion during anoestrus in ewes (Land et al., 1976; McNeilly et al., 1985; Thomas et al., 1988), Karsch et al. (1984) suggested that seasonal anoestrus in ewes is a relatively uniform physiological state. In contrast, in Père David’s hind pituitary LH responsiveness to GnRH and its efficacy in inducing ovarian activity vary significantly with season (Curlewis et al., 1991; McLeod et al., 1991).

In ewes, reproductive seasonality is related to a change in the sensitivity of LH secretion to the negative feedback action of oestradiol and this is concomitant with the onset and cessation of the breeding season (Legan et al., 1977; Karsch et al., 1984). However, the possible contribution of steroid-independent mechanisms to the control of reproductive seasonality is not well understood.

The present study was undertaken to test the hypothesis that in ovarioctomized red deer hinds, the seasonal patterns of LH concentrations are indicative of both steroid-dependent and -independent neuroendocrine control mechanisms. Furthermore, the possible contribution of pituitary responsiveness to seasonal LH concentrations was assessed with exogenous GnRH.

Materials and Methods

Experimental summary

The experiment used 24 adult, farmed red deer (Cervus elaphus) hinds, allocated to the following treatment groups (eight per group): (1) ovarioctomized; (2) ovarioctomized and treated with oestradiol administered via subcutaneous implants, and (3) intact hinds. In sheep, gonadotrophin secretion in ovarioctomized animals is influenced by time from ovarioectomy (Montgomery et al., 1985; Joseph et al., 1992), as well as by season (Goodman et al., 1982; Robinson et al., 1985); therefore, hinds with two different histories of ovarian removal were used. Blood samples were collected once a week over the

*Present address: Landcare, P.O. Box 69, Lincoln, Canterbury, New Zealand.
†Correspondence.
Received 30 June 1995.
following 15 months (February 1990 to April 1991) and plasma concentrations of LH determined. In addition, the pituitary LH responsiveness to exogenous GnRH was assessed every 4 weeks, while the timing and duration of the breeding season in intact herd mates was determined by monitoring ovarian progesterone secretion.

Animal management, ovariectomy and oestradiol treatment

The hinds were run together as a single group, outdoors (latitude 45°53'S) under normal farm management (except that access to stags was denied) on predominantly ryegrass–white clover pasture, supplemented with meadow hay in winter. At the beginning of the experiment mean (± SEM) ages and masses were 12 ± 0.4 years and 114 ± 2.2 kg, respectively. Ovariec-
tomies were performed via midline laparotomy under general anaesthesia induced i.v. with 1.5 mg fentanyl citrate and 12 mg azaperone (Fentaz; Smith, Kline and French (NZ) Ltd, Auckland) and 77 mg xylene hydrochloride (Rompun: Bayer NZ Ltd, Petone) and reversed i.v. with 25 mg yohimbine (Mackintosh and Van Reenen, 1984) and 0.2 mg naloxone hydrochloride (Naran: Endo Laboratories, Artarmon, NSW). Half of the ovariec-
tomized hinds had undergone ovariectomy 2.3 years earlier (May, 1987); these animals had previously been exposed for short periods to progestagens, oestrogen or ACTH treatment (see Jopson et al., 1990; Meikle and Fisher, 1990). The other half underwent ovariectomy at the beginning of the experiment (February, 1990). Silastic implants were prepared from 0.335 cm inner × 0.465 cm outer diameter silastic tubing (Dow Corning Corp., Midland, MI) 5 cm in length (of which 0.5 cm was plugged at each end) containing oestradiol (Sigma Chemical Co., St Louis, MO) as described by Karsch et al. (1973). Ovariectomized hinds that did not receive oestradiol treatment received empty implants. Implants were soaked separately in water overnight, and were immersed in 70% ethanol for at least 30 min before insertion. Implants were inserted s.c. into the inguinal region under general anaesthesia, on 27 February 1990 (long-term ovariectomized hinds) or during ovariectomy (short-term ovariectomized animals) on 20 February 1990.

Blood sampling

Blood samples (10 ml) were taken by jugular venepuncture, with the hinds physically restrained in a compressed air operated deer crush. Blood was collected into heparinized tubes and the plasma removed and stored at −20°C until analysed. Blood samples were taken once a week from all hinds for the duration of the experiment (22 February 1990 to 24 April 1991) and twice a week from entire hinds at about the expected time of the breeding season (March to November). In addition, at intervals of approximately 4 weeks, all animals were treated with GnRH (10 µg; Sigma Chemical Co.; made up at the start of the study and frozen in a concentrated form) administered i.v. in saline, immediately after sampling and a further sample was taken 15 min later. This limited sampling protocol was used because of the relatively intractable nature of some farmed animals and was considered appropriate since other studies have revealed that after GnRH treatment, LH concentrations peak at 15 min (red hinds: M. W. Fisher and B. J. McLeod, unpublished data; Père David’s hinds: Curlewis et al., 1991).

Hormone analyses

Plasma LH concentrations were measured using a heterolo-
gous double-antibody radioimmunoassay developed in our laboratory. The antiserum (R2), raised in a rabbit against highly purified ovine LH (NAMDD-oLH-24), was used at an initial dilution of 1:60 000. The antiserum exhibited low (<1%) crossreactivity with ovine and cervine growth hormone and bovine thyroid stimulating hormone and little reactivity (<0.1%) with ovine FSH or ovine prolactin. The reference preparation and iodinated tracer were the highly purified ovine LH CY1085 (biopotency 3.45 × NIH-LH-S1). Standards were made up in 0.1% (w/v) BSA phosphate buffer to which 100 µl of cervine plasma containing low LH (obtained from medroxyprogesterone acetate-treated hinds; Sigma Chemical Co.) was added. Interassay coefficients of variation for plasma pools containing 0.2, 1.5 and 4.5 ng ml⁻¹ were 16.6%, 6.7% and 4.6%, respectively. The intra-assay coefficient of variation calculated on 30 duplicate pairs per assay (n = 6) was 9.1%. The limit of assay sensitivity, defined as the apparent concentration at two standard deviations above the zero standard, averaged 0.05 ng ml⁻¹. Parallelism was demonstrated by serial dilutions of hind plasma in assay buffer. Progesterone concentrations were determined, by solid phase ¹²⁵I radioimmunoassay (Diagnostic Products Corporation, Los Angeles, CA) as described by Jopson et al. (1990). All samples were completed within one assay and the coefficient of variation on a plasma pool containing 3.50 ng ml⁻¹ measured 18 times was 13.4%. The limit of assay sensitivity was 0.08 ng ml⁻¹.

Statistical analyses

The onset of the breeding season for an individual hind was defined as the date when plasma progesterone concentrations first exceeded 0.5 ng ml⁻¹ and remained above that value for at least 7 days. The end of the breeding season was determined as the last date on which progesterone concentrations fell, and remained below 0.5 ng ml⁻¹ for at least 7 days. Further-
more, there had to be evidence of a regular cyclic pattern (approximately 17–21 day ovarian cycles) in individual hinds. The variances were equalized by log transforming LH results and the mean concentrations for breeding and anoestrous season were analysed by analysis of variance, fitting terms for oestradiol treatment, history of ovarian removal (long-term or short-term ovariectomized), and their interaction. In addition, a comparison of the patterns of basal LH secretion between ovariectomized and ovariectomized oestradiol-treated hinds was made by analysis of variance of the concentrations obtained on each sampling occasion, and by comparing the areas under the curve between the peak in the first breeding season and the nadir during anoestrous and between the first and second breeding season. Patterns of LH concentrations during anoestrous were further analysed with regard to the time that peripheral plasma concentrations first fell, or increased above, 0.2 ng ml⁻¹ and remained at these values for two samples or more. In the analysis of the response to GnRH.
baseline LH concentrations (time 0) were subtracted from the sample taken 15 min after GnRH treatment for each hind. All results are expressed as the mean and range or as the mean ± SEM.

Results

Breeding and non-breeding seasons

The 1990 breeding season, during which six of eight hinds had seven to nine ovarian cycles, began at a mean date of 29 March ± 1.4 days and ended on 4 September ± 8.4 days (Fig. 1). Seasonal anoestrous had a mean duration of 202 ± 16.8 days. The 1991 breeding season began on 3 April ± 9.0 days (although two hinds had not become cyclic before the end of sampling on 19 April).

Seasonal plasma concentrations of LH

One short-term ovariectomized, oestradiol-treated hind lost its implant during the experiment and was subsequently

Fig. 1. Plasma progesterone profiles for four individual, intact, red deer hinds sampled once a week (non-breeding season) or twice a week (breeding season). (a) and (d) are representative of most (6 of 8) animals with the remaining two hinds (b) and (c) having patterns in which it was not possible to distinguish between breeding and non-breeding seasons.
removed from analysis. Profiles of mean LH concentrations in ovariecated hinds are shown (Fig. 2).

During the time of the breeding season (determined from the intact hinds) mean LH concentrations in ovariecated oestradiol-treated hinds were 0.6 (range: 0.1–2.5) ng ml⁻¹ plasma, gradually increasing from 0.3 ± 0.09 ng ml⁻¹ on 2 April to 1.1 ± 0.16 ng ml⁻¹ on 29 May and then decreasing to 0.2 ± 0.07 ng ml⁻¹ at the end of the breeding season on 3 September. In contrast, the non-breeding season was characterized by significantly (P < 0.001) lower mean LH concentrations (mean 0.1, range: 0–0.9 ng ml⁻¹ plasma).

In ovariecated hinds that did not receive oestradiol treatment, mean LH concentrations also displayed a seasonal pattern, being highest during the breeding season, peaking at 1.1 ng ml⁻¹ on 18 June, and reaching lowest values during the non-breeding season, 0.1 ng ml⁻¹ on 26 November (Fig. 2). Concentrations recorded at these seasonal peaks and nadirs were similar to those recorded in the ovariecated oestradiol-treated hinds and the nadir was also similar to concentrations recorded in the intact hinds. However, although peak and trough values were similar, LH concentrations in the ovariecated hinds decreased from peak values more slowly and increased earlier compared with ovariecated oestradiol-treated hinds. This was evident in the significantly higher LH concentrations recorded in the ovariecated hinds on nearly all occasions except for periods during the breeding season and around November when concentrations were at their lowest in all animals, and was also apparent when analysed as the area under the curve between the first breeding season peak and the anoestrous nadir (P < 0.01) and the nadir to the second breeding season (P < 0.001). This gradual change in LH concentrations in ovariecated hinds occurred throughout the study (Fig. 2), and was inversely proportional to and about 4 weeks in advance of the prevailing photoperiod (LH concentration = 3.14–0.0991 daily photoperiod, r² = 0.62; P < 0.001).

Ovariecated hinds had higher mean LH concentrations than did ovariecated, oestradiol-treated hinds during both the breeding (0.9, range 0.3–2.8 versus 0.6, range 0.1–2.5 ng ml⁻¹, respectively; P < 0.01) and non-breeding (0.5, range 0.1–2.3 versus 0.1, range 0–0.9 ng ml⁻¹, respectively; P < 0.001) seasons.

Plasma LH concentrations in intact hinds generally remained below 0.2 ng ml⁻¹. However, concentrations of 1.5–5.0 ng ml⁻¹ were recorded on seven occasions within the breeding season in four animals, and were accompanied by behavioural oestrus on three occasions. Apart from this, there was no evidence of any seasonal patterns in LH secretion.

Seasonal pituitary LH response to GnRH

The LH response to exogenous GnRH given at intervals of 4 weeks are presented (Fig. 2). Between April and August (breeding season) the mean LH concentration for ovariecated hinds treated with oestradiol averaged 16.4 (range: 1.4–32.3) ng ml⁻¹, significantly greater than that recorded in ovariecated hinds without oestradiol treatment (mean 7.4, range: 1.2–14.6 ng ml⁻¹, P < 0.001). Mean LH concentrations in ovariecated, oestradiol-treated hinds decreased rapidly over September to November, averaging 3.1 (range 0.2–14.0) ng ml⁻¹ over the non-breeding season. In contrast, the decrease in mean LH response at this time in untreated ovariecated hinds was of a much lower magnitude, with concentrations averaging 4.2 (range 0.8–12.8) ng ml⁻¹ during the non-breeding season, significantly (P < 0.001) greater than that of oestradiol-treated hinds.

The LH response to GnRH treatment in the intact hinds was of a much lower magnitude than that in either group of ovariecated hinds, averaging just 1.0 (range: 0.2–2.3) and 1.3 (range: 0–5.7) ng ml⁻¹ during the breeding and non-breeding season, respectively. A marked decline in responsiveness was noted (Fig. 2) during part of anoestrus and was at a minimum in November (mean 0.2, range: 0–0.3 ng ml⁻¹).

Effect of history of ovarian removal

Essentially similar patterns of LH secretion were measured in those hinds ovariecated at the beginning of the experiment, compared with those ovariecated 2.3 years earlier. However, LH concentrations were slightly greater in those animals ovariecated for the longer period (Table 1). Similarly, the nadir (mean concentrations < 0.2 ng ml⁻¹ plasma) in LH concentrations recorded during anoestrus was reached significantly earlier in the short-term compared with long-term ovariecated hinds (29.2 days earlier in ovariecated, oestradiol-treated hinds, P < 0.05; and 21.3 days earlier in ovariecated, untreated hinds, P < 0.05). The subsequent increase in LH concentrations occurred at similar times in both long-term and short-term ovariecated hinds. The interaction between oestradiol treatment and history of ovarian removal was significant (P < 0.05) in only one instance, that of basal LH secretion during the breeding season.

Discussion

An important finding of the study reported here was the marked seasonal variation in the ability of exogenous oestradiol to suppress tonic LH concentrations in ovariecated hinds. The breeding season was characterized by minimal suppression and anoestrus by maximal suppression; these changes were approximately aligned with the onset and cessation of ovarian activity recorded in intact hermutes. This is in agreement with previous work in sheep (Legan et al., 1977; Goodman et al., 1982; Webster and Haresign, 1983) and goats (Henniawati et al., 1995), indicating that a change in the steroid-feedback mechanism determines, or at least accompanies, changes in reproductive status. However, the present study also revealed that two other mechanisms may be important in regulating seasonality. The first, a steroid-independent mechanism, is suggested by the marked circannual pattern in LH secretion in ovariecated hinds that did not receive oestradiol. This was even apparent 2.3–3.5 years after ovariecotomy. This pattern has also been noted in ovariecated hares (Davis and Meyer, 1973; Calliol et al., 1990) and mares (Garcia and Ginther, 1976; Friedman et al., 1979) as well as in ewes, in which it is evident as a change in the frequency of episodic LH secretion (Goodman et al., 1982; Robinson et al., 1985). A similar pattern, although somewhat equivocal, has
Fig. 2. Mean (±SEM) concentrations of (a) seasonal plasma LH and (b) GnRH-induced LH, in (○) ovariectomized and (●) ovariectomized and oestradiol-treated hinds, and (c) GnRH-induced LH concentrations in intact hinds. LH concentrations were determined from blood samples taken approximately once a week, while the response to GnRH, determined by subtracting the time zero concentration from that obtained 15 min after i.v. administration of 10 µg GnRH, was determined at intervals of approximately 4 weeks. The horizontal bars represent the mean breeding season determined by monitoring progesterone secretion in the intact hinds. The asterisks indicate significant differences (at least P < 0.05) between ovariectomized and ovariectomized oestradiol-treated hinds at each sampling occasion.
been reported in castrated male deer (red, Lincoln and Kay, 1979; McMahon, 1994; white-tailed, Bubenik et al., 1982). The second mechanism is suggested by the seasonal variation in pituitary responsiveness to exogenous GnRH, seen in both untreated and oestradiol-treated ovariectomized hinds, and in intact hinds. This has also been reported in red deer stags (Suttie et al., 1984; Fennessy et al., 1988). Although this variation is also steroid independent, its magnitude is clearly modified by oestradiol. Separate studies in ovariectomized deer have shown a period of seasonal quiescence in the positive feedback effects of oestradiol (Meikle and Fisher, 1990; Jabbour et al., 1992). Collectively, these results would suggest that seasonal influences act on several components of the hypothalamic–pituitary–ovarian axis and, although likely to be driven by a central neuroendocrine mechanism, the contribution of all mechanisms to seasonality, albeit in a passive or subordinate manner, should not be overlooked. For instance, the change in pituitary responsiveness to exogenous GnRH, thought to be of relatively little importance in regulating ovarian function in ewes (McLeod et al., 1982), is a function of releasable LH which in turn is inversely related to the frequency of endogenous GnRH secretion (Clarke and Cummins, 1985; Clarke et al., 1987). However, in hinds, the greatest response to exogenous GnRH occurs during the breeding season when the frequency of endogenous GnRH would be expected to be maximum, at least as determined by more frequent pulsatile LH secretion in these animals (L. M. Meikle and M. W. Fisher, unpublished data). This probably reflects differences between physiological amounts of GnRH and the 10 μg pharmacological dose used in the present study (chosen so that the possible confounding influences of coincident endogenous GnRH would be minimized).

Since both steroid-dependent and -independent mechanisms are evident and since present experimental techniques cannot differentiate between the mechanisms, the contention that steroid-dependent regulation is the major determinant of seasonality (Karsch et al., 1993) remains unconvincing. As both mechanisms may be mediated via different neural systems (Pau and Jackson, 1985; Meyer and Goodman, 1986; Goodman, 1988), it is possible that they both interact in the regulation of seasonality (Robinson et al., 1985). Furthermore, the effects of season on basal and GnRH-induced LH secretion in the present study suggest that the real central physiological control mechanism is steroid independent, its effects merely amplified, both in magnitude and temporally, by the presence of oestriol (steroid-dependent), as Lincoln and Short (1980) suggested. Animals with quiescent or regressed gonads during anoestrus do not immediately show a gonadotrophin response to castration (Lincoln and Short, 1980) indicating that a steroid-dependent mechanism is not fully competent at all times, and that some other mechanism inhibits or prevents LH secretion. Further evidence for steroid-independent regulation may be the differing depths or stages of anoestrus noted in sheep (McNeill et al., 1985) and deer. For instance, in the present study the intact hinds displayed a marked reduction in the LH response to exogenous GnRH in the early compared with the later part of anoestrus, a pattern also noted in ovary-intact Père David’s deer (Curlewis et al., 1991; McLeod et al., 1991). These results suggest that anoestrus is not a uniform state but is characterized by an early ‘deep’ period (Curlewis et al., 1991) and a steroid-independent mechanism is the most likely explanation.

All the steroid-independent, as well as the steroid-dependent, seasonal alterations in LH concentrations observed

Table 1. The effect of time from ovariectomy until the beginning of the experiment on plasma LH concentrations in oestradiol-treated and untreated ovariectomized red deer hinds during the breeding and non-breeding seasons.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (range) LH secretion (ng ml⁻¹ plasma)</th>
<th>Significance of contrast between short- and long-term ovariectomized†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short-term ovariectomized (1 week)</td>
<td>Long-term ovariectomized (2.3 years)</td>
</tr>
<tr>
<td>Basal LH secretion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovariectomized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breeding season</td>
<td>0.8 (0.3–1.0)</td>
<td>0.9 (0.4–2.8)</td>
</tr>
<tr>
<td>Anoestrus</td>
<td>0.4 (0.1–1.2)</td>
<td>0.5 (0.1–2.3)</td>
</tr>
<tr>
<td>Ovariectomized + oestradiol treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breeding season</td>
<td>0.4 (0.1–1.7)</td>
<td>0.7 (0.1–2.5)</td>
</tr>
<tr>
<td>Anoestrus</td>
<td>0.1 (0.1–0.6)</td>
<td>0.1 (0.0–0.9)</td>
</tr>
<tr>
<td>GnRH-induced LH secretion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovariectomized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breeding season</td>
<td>6.6 (2.9–12.5)</td>
<td>8.2 (1.2–14.6)</td>
</tr>
<tr>
<td>Anoestrus</td>
<td>3.3 (0.8–9.2)</td>
<td>5.1 (2.1–12.8)</td>
</tr>
<tr>
<td>Ovariectomized + oestradiol treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breeding season</td>
<td>16.8 (7.3–32.3)</td>
<td>16.1 (1.4–27.6)</td>
</tr>
<tr>
<td>Anoestrus</td>
<td>2.0 (0.2–11.0)</td>
<td>4.0 (0.8–14.0)</td>
</tr>
</tbody>
</table>

†NS = not significant; *P < 0.05; ***P < 0.001.
LH secretion in ovariectomized hind

In hinds in the present study are also evident in at least some breeds of ewe, albeit at a significantly reduced magnitude. Since domestication can reduce the amplitude of seasonal reproductive parameters (see Setchell, 1992), the differences between the hind and ewe may merely indicate the extent to which they have been domesticated, or reflect the degree of gonadal regression that occurs during the non-breeding season (Goodman and Karsch, 1981). It will be interesting to see if farming and domestication modifies reproductive seasonality in deer, and indeed this animal provides an almost unique opportunity to monitor the effects of domestication in an ungulate (Fisher and Bryant, 1993).

The use of a relatively recently domesticated experimental animal, such as the deer, also imposes some other limitations upon interpretation of the data. These animals are not as docile as the domestic ewe, and the acts of yarding, handling and blood sampling may possibly affect hormone secretion. For instance, progesterone secretion throughout anoestrous recorded in two hinds may have been of adrenal origin (Jopson et al., 1990) or alternatively might reflect persistent luteal activity (Curlewis et al., 1988; Brinklow et al., 1992). However, some limitations should be taken into consideration it is unlikely that they would affect the major conclusions reached in this study.

The duration of the interval between ovariectomy and the start of the experiment had little effect on the results, apart from altering the magnitude of the seasonal alterations in LH secretion as might be expected given the longer steroid-free environment and probable differences in metabolic clearance rates (Montgomery et al., 1984). Since the seasonal patterns of LH secretion were similar in both groups of hinds, the inclusion of animals of varied experimental histories in seasonality experiments ensures the interpretation of seasonal patterns is not unduly confounded by time after ovariectomy (Montgomery et al., 1985).

The authors are indebted to the many people at Invermay who have made significant contributions to this study, especially P. F. Fennessy, P. D. Johnston, R. P. Littlejohn, C. G. Mackintosh, B. J. McLeod, T. R. Manley, G. H. Stackell, J. M. Suttie and A. J. Whaanga. They also thank Y. Combarbous, INRA, Nouilly, France and A. F. Parlow, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, USA for the generous provision of assay reagents.

References

Davis GJ and Meyer RK (1973) Seasonal variation in LH and FSH of bilaterally castrated snowshoe hares General and Comparative Endocrinology 20 61–66
Fennessy PF, Suttie JM, Crosbie SF, Corson JD, Elger HJ and Lnapwood KR (1988) Plasma LH and luteinizing hormone responses to gonadotrophin-releasing hormone in adult red deer (Cervus elaphus) stages during the annual anler cycle Journal of Endocrinology 117 35–41
Fisher MW and Bryant LD (1993) What might be the consequences of adapting wild animals such as wapiti: to a farm environment? Proceedings of the New Zealand Society of Animal Production 53 457–460
Garcia MC and Ginther OJ (1976) Effects of ovariectomy and season on plasma luteinizing hormone in mares Endocrinology 98 556–562
Karsch FJ, Dierschke DJ, Weick RF, Yamaji T, Hotchkiss J and Kobil B (1973) Positive and negative feedback control by estrogen of luteinizing hormone secretion in the rabbit monkey Endocrinology 92 799–804
Land RB, Wheeler AG and Carr WR (1976) Seasonal variation in the oestrous induced LH discharge of ovariectomized Finnish Landrace and Scottish Blackface ewes Annales de Biologie Animale, Biochimie Biophysique 16 521–528
Legan SJ, Karchs FJ and Foster DL (1977) The endocrine control of seasonal reproductive function in the ewe: a marked change in response to the negative feedback action of estradiol on luteinizing hormone secretion Endocrinology 101 818–824

Lincoln GA and Short RV (1980) Seasonal breeding: nature’s contraceptive Recent Progress in Hormone Research 36 1–32

Pau K-YF and Jackson GL (1985) Effect of frontal hypothalamic deafferentation on photoperiod-induced changes of luteinizing hormone secretion in the ewe Neuroendocrinology 41 72–76

Robinson JE, Radford HM and Karchs FJ (1985) Seasonal changes in pulsatile luteinizing hormone (LH) secretion in the ewe: relationship of frequency of LH pulses to day length and response to estradiol negative feedback Biology of Reproduction 33 324–334

