Stimulatory effect of insulin-like growth factor I and epidermal growth factor on the maturation of rabbit oocytes in vitro

P. L. Lorenzo¹, P. G. Rebollar², M. J. Illera¹, J. C. Illera¹, M. Illera¹ and J. M. R. Alvariño²

¹Departamento de Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria and ²Departamento de Producción Animal, ETSI Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain

The effects of different combinations of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on cumulus expansion and meiotic maturation were examined in rabbit oocytes. Selected rabbit follicular oocytes were matured in vitro and were classified as cumulus-oocyte complexes or denuded oocytes. They were cultured in TCM 199, and were treated with growth factors at different concentrations: EGF at 0, 1, 10, 50 and 100 ng ml⁻¹, IGF-I at 0, 50, 100 and 200 ng ml⁻¹ and EGF plus IGF-I at 10 + 50; 10 + 100; 50 + 50 and 50 + 100 ng ml⁻¹, respectively. After 6 h of culture, the oocytes were assessed for nuclear maturation and after 16 h of culture, for cumulus expansion and maturation stage. After culture for 6 h, the incidence of germinal vesicle breakdown was higher (P < 0.05) in all of the growth factor treatments tested compared with controls. After culture for 16 h, EGF enhanced the incidence of cumulus expansion at all of the concentrations tested. Cumulus expansion was greatest with 50 mg EGF ml⁻¹ plus 100 ng IGF-I ml⁻¹ (72.0% versus 2.4% in controls). Treatment with IGF-I significantly increased (P < 0.05) the incidence of metaphase II stage, and maximum stimulation occurred at 100 ng IGF-I ml⁻¹ (84.5% versus 31.1% in controls). However, IGF-I did not affect cumulus expansion. When denuded oocytes were used, no positive effects on nuclear maturation rates were observed for any treatment. These results suggest that: (1) EGF, either alone or with IGF-I, stimulates cumulus expansion; (2) the addition of IGF-I or EGF plus IGF-I significantly enhances nuclear maturation in immature rabbit oocytes; and (3) this effect is mediated by the presence of cumulus cells.

Introduction

Mammalian oocytes mature in vivo at the time of the pre-ovulation gonadotrophin surge, but can also mature in vitro in a suitable medium (Edwards, 1965). Maturation depends on the interaction of many factors and enables oocyte development to reach metaphase II. Implementation of technologies dependent on maturation in vitro requires knowledge and understanding of factors determining the meiotic and developmental potential of oocytes under conditions in vitro.

Gonadotrophins are the primary regulators of nuclear maturation in these oocytes. However, more recent observations imply that gonadotrophins are only part of the complex sequence of factors, such as growth factors, that regulate ovarian function (Tonetta and DiZerega, 1989). Epidermal growth factor (EGF) stimulates proliferation of ovarian granulosa cells in various species (Gospodarovicz and Bialek, 1979; May et al., 1987), modulates differentiation of granulosa cells (Hsueh et al., 1981), and in women stimulates the growth of small follicles (Westergaard et al., 1990). Insulin-like growth factor-I (IGF-I) is a potent mitogen for granulosa cells (Hernández et al., 1988), even in the absence of FSH (Veldhuis et al., 1986), and acts as a biological amplifier of the action of FSH in the ovary (Hsu and Hammond, 1987).

The regulation of oocyte maturation by growth factors in animal species such as mice (Brucker et al., 1991), rats (Feng et al., 1988), pigs (Reed et al., 1993; Ding and Foxcroft, 1994) and cattle (Harper and Brackett, 1993; Lorenzo et al., 1994) has been described. Studies in vitro with EGF showed the induction of germinal vesicle breakdown in cumulus cell-enclosed mouse oocytes maintained in meiotic arrest with purines, dibutyryl-AMP, or the phosphodiesterase inhibitor IBMX (Downs et al., 1988; Downs, 1989). It appears that EGF, like LH, promotes oocyte maturation either by disruption of its communication with cumulus cells (Dekel and Sheridy, 1985) or that it creates a positive maturation signal (Downs, 1989). However, IGF-I stimulates maturation in Xenopus oocytes (Hainaut et al., 1991), enhances bovine oocyte maturation and fertilization in vitro (Lorenzo et al., 1993), and improves the quality of bovine embryos (Herlerr et al., 1992). It is possible that there is a relationship between IGF-I and oocyte maturation, particularly as high concentrations of IGF-I were found in the cumulus.
oophorus of rats (Oliver et al., 1989). Moreover, in several studies immunoreactive IGF-I was localized in the theca-interstitial compartment and in the cumulus cells surrounding the oocyte (Balboni et al., 1987). However, there is no information about growth factor-induced regulation of rabbit oocyte maturation. Rabbit oocytes are widely used as an in vitro model in experimental procedures on mammalian oocytes and embryos (Kaufmann et al., 1990; Yoshimura et al., 1992).

The aim of the present study was to establish whether EGF and IGF-I alone or in combination, added to maturation media, without the addition of exogenous hormones, enhance the cumulus expansion and the maturation rate of rabbit oocytes in vitro. The results obtained may serve to shed light on some physiological functions of these growth factors with respect to oocyte maturation.

Materials and Methods

All media and reagents were purchased from Sigma Chemical Co. (St Louis, MO) except IGF-I (Boehringer Mannheim GmbH, Mannheim). The medium used for washing and maturation of oocytes consisted of TCM 199 with Earle’s salts, modified by the addition of 1-glutamine, sodium bicarbonate, glucose, sodium pyruvate and gentamicin sulfate as described by Arellano et al. (1993). This medium is subsequently referred to as TCM 199. Stock solutions of growth factors were diluted and added to TCM 199 for maturation culture as appropriate. They were reconstituted in PBS solution (without glucose) containing 3 mg BSA ml⁻¹, and stored at −20°C until used. The final concentration of BSA in the maturation medium was 0.003% (w/v). Human recombinant EGF, IGF and EGF + IGF-I in various combinations were added to the maturation media as described below.

Sexually mature New Zealand White × Californian does (2.5–3.5 kg body mass) were used as ovary donors. Animals used in this study were treated according to the CEE Council Directive (86/609, 1986) for the Care of Experimental Animals. They were housed individually in metal cages (32 cm × 52 cm) on perforated sheets in air-conditioned rooms (25°C, 45% relative humidity); under a 16 h light:8 h dark cycle (average light intensity, 45 ± 10 lx). Artificial lights were on from 08.00 h to 24.00 h. Pelleted commercial diet (Lab Rabbit Chow, Purina Mills Inc.; 16.2% protein, 2.5% fat and 13.5% crude fibre) was restricted to about 125 g day⁻¹, and water was supplied ad libitum. Animals were kept in these conditions for at least 16 days and they were then killed at an abattoir and their ovaries removed. The ovaries were transported in PBS (supplemented with 100 µg penicillin ml⁻¹ and 50 µg streptomycin ml⁻¹) to the laboratory within 2 h of death, and were then placed in 5 ml TCM 199 in 60 mm Petri dishes. Ovaries were excluded from further study if they appeared to be immature or if 50% or more of the surface follicles appeared haemorrhagic. Selected follicles (> 1 mm in diameter) were sliced under a dissecting microscope with an iris knife to release the follicular contents. Follicles smaller than 1 mm in diameter contain oocytes not competent to achieve meiosis (Jelinikova et al., 1994). Collected oocytes were kept in 35 mm, sterile, Petri dishes containing TCM 199 medium, and were washed five times before culture. According to predefined criteria (Lorenzo et al., 1994), selected cumulus–oocyte complexes were divided into cumulus–oocyte complexes (with intact and unexpanded cumulus) or denuded oocytes (without layers of cumulus cells), placed under 1.0 ml TCM 199 medium and cultured at 37°C in 5% CO₂ in air and 100% humidity for 16 h. The oocytes collected were pooled and assigned to treatment groups at random.

Assessment of cumulus expansion

Cumulus–oocyte complexes were evaluated after culture for 16 h to assess the effect of growth factors on cumulus expansion. Cumulus expansion was scored based on the subjective scale of 0 to 3, in which 0 indicates no detectable response; 1 shows the minimum observable response; 2 indicates partial expansion, with more than half of the cumulus expanded; and 3 shows full expansion, where all layers of cumulus cells have expanded, including those closest to the oocyte.

Assessment of nuclear maturation

At the end of 6 h and 16 h of culture, oocytes were fixed and stained to ascertain the influence of growth factors on nuclear maturation, and the effect of the presence or absence of cumulus cells surrounding the oocyte. Both cumulus–oocyte complexes and denuded oocytes were used. Cumulus–oocyte complexes were placed in PBS solution containing 200 IU hyaluronidase ml⁻¹. Cumulus cells were removed mechanically by repeated aspiration with a fine-bore pipette. The oocytes were then pipetted onto a slide. A coverslip, spotted with a paraffin wax–vaseline (10:1) mixture at each corner, was placed directly over the centre of the drop containing the oocytes. Fixation of oocytes was carried out by placing the slides in acetic acid:ethanol (1:3) for 24 h, and staining with acet-o-orcein (1% orcein in 60% acetic acid) for 5 min. Nuclear maturation was evaluated under a phase contrast microscope at × 200 and × 500 magnification, and was expressed as the percentage of oocytes that had achieved metaphase II. Oocytes were also assessed according to the status of the germinal vesicle.

Design and analysis of experiments

In Expt 1, cumulus–oocyte complexes and denuded oocytes were cultured in vitro with different concentrations of EGF ranging from 1 to 100 ng ml⁻¹, while in Expt 2, oocytes were cultured with 50, 100 and 200 ng IGF-I ml⁻¹, and were compared with controls. In Expt 3, the effect of different combinations of EGF and IGF-I (10 and 50 ng EGF ml⁻¹, and 50 and 100 ng IGF-I ml⁻¹) on maturation in vitro was investigated. Cumulus expansion in the cumulus–oocyte complexes, and the status of the germinal vesicle and metaphase II stages in both groups of oocyte (complexes and denuded), were used as endpoint parameters for assessing the effect of the growth factors on rabbit oocyte expansion and nuclear maturation in vitro. Each experiment was replicated nine times. Control oocytes (usually fewer oocytes were used in control groups
than in treatment groups) were handled in the same way as the treatment oocytes, but without addition of growth factors.

Statistical analyses

Statistical analysis of endpoints was carried out with pooled data using the Biomedical Data Program (BMDP, Dixon et al., 1990). Mean values were subjected to analysis of variance using the 7 d procedure (one- and two-way ANOVA) of BMDP. When the 7 d procedure revealed a significant treatment effect, the means were analysed by pairwise i test and Bonferroni post-test to ascertain statistical differences between treatments. A P value less than 0.05 was accepted as significant.

Results

Experiment 1: effects of EGF on cumulus expansion and oocyte maturation

The addition of EGF to oocytes cultured for 6 h stimulated germinal vesicle breakdown (GVBD) in a dose-dependent manner (Table 1). A significantly higher proportion of oocytes exhibited GVBD when cultured with 50 ng EGF ml⁻¹ (62.9%) compared with those cultured in the control medium (27.2%). There was a significant increase in the number of oocytes undergoing metaphase II after 16 h of culture compared with control oocytes for all concentrations of EGF used, and 10 ng EGF ml⁻¹ was the most effective (73.5%). Results obtained revealed significant differences (P < 0.05) in the proportions of complexes undergoing cumulus expansion (partial and full) between the control medium and all concentrations of EGF used (Table 1). The highest percentages of full cumulus expansion observed were 26.1% and 28.3%, obtained with 10 and 50 ng EGF ml⁻¹, respectively (data not shown). These values are significantly different compared with untreated control (P < 0.05) but not with the other concentrations of EGF.

Experiment 2: effects of IGF-I on cumulus expansion and oocyte maturation

After 6 h of culture, the addition of IGF-I significantly stimulated GVBD (P < 0.05) compared with the controls for all concentrations used (Table 2). After 16 h of culture, no significant effect on the proportion of cumulus–oocyte complexes undergoing cumulus expansion was observed after treatment with IGF-I (4.8%, 5.6% and 4.9%, for 50, 100 and 200 ng IGF-I ml⁻¹, respectively) compared with control treatment (TCM 199, 2.2%). However, significant differences (P < 0.05) were observed in the proportion of oocytes reaching metaphase II between the control (31.1%) and 50, 100 and 200 ng ml⁻¹ IGF-I treatment groups (83.8%, 84.5% and 61.7%, respectively).

Experiment 3: combined effects of EGF and IGF-I on cumulus expansion and oocyte maturation

Those concentrations which produced the greatest effects in the first two experiments (10 and 50 ng EGF ml⁻¹, and 50 and 100 ng IGF-I ml⁻¹) were used in this experiment. When EGF was used in conjunction with IGF-I, the number of complexes undergoing cumulus expansion (partial and full) was significantly greater than that observed in the controls, or when IGF-I was used alone (P < 0.01) (Table 3). However, the highest nuclear maturation rates obtained when EGF was used in combination with IGF-I (10 + 100 and 50 + 100 ng ml⁻¹ of EGF and IGF-I, respectively) were less, although not significantly so (P > 0.05), than those obtained with IGF-I alone.

Finally, there were no significant differences in the rate of maturation (neither at germinal vesicle breakdown after 6 h of culture nor at metaphase II stage after 16 h of culture, respectively) for denuded oocytes among the growth factor treatments used (Table 4). The incidence of degeneration in denuded oocytes, at 6 h and 16 h of culture, was not significantly reduced by the addition of growth factors (range: 29.8–21.0%, data not shown), contrary to the results for the cumulus–oocyte complexes (Tables 1 to 3).

Discussion

Cumulus oophoros expansion in mammalian oocytes occurs in response to an ever-changing milieu of gonadotrophins, growth factors, steroids, factors secreted by the oocyte and other unknown molecules (Buccione et al., 1990). These compounds could be contributing to maturational changes that occur in the oocyte mediated by intracellular messengers such as CAMP, calmodulin or diacylglycerol (Gonzalves and Graves, 1992). The expansion criterion adopted in the present work was similar to that used by other authors (Downs, 1989; Buccione et al., 1990; Harper and Brackett, 1993). The most successful in vitro maturation systems used fetal serum or oestrous or pre-oestrous serum to optimize development of oocytes (Schellander et al., 1990). Serum is a highly complex combination of components including proteins, fatty acids, vitamins, hormones, trace elements and growth factors. By using a practically serum-free media for the in vitro maturation in the work presented here, it was possible to examine the relationship between growth factors and the regulation of nuclear maturation and cumulus expansion, while effectively ruling out the influence of unknown serum factors. The maturation medium used in the present study was supplemented with a BSA concentration (0.003%) lower than that described by other authors as necessary to maintain cumulus expansion (3–6 mg ml⁻¹ w/w, Leibfried-Rutledge et al., 1986). Therefore, the effects of the oocytes observed in the present study were presumably influenced by the growth factors tested.

The results presented here show that EGF enhances cumulus expansion in rabbit cumulus–oocyte complexes in the same way as demonstrated by Downs (1989) for rodent oocytes. However, the lesser effect of EGF on cumulus expansion compared with that seen in mouse oocytes may be due to the fact that, whereas recombinant human EGF was used in this study, homologous mouse EGF was used in Downs' study. Although IGF-I per se cannot promote effective cumulus expansion, this did not impair the maturation rate. Zhang et al. (1991) using IGF-I analogues such as insulin also recorded poor
Table 1. Nuclear maturation and cumulus cell expansion in rabbit cumulus–oocyte complexes after culture for 6 h and 16 h during maturation of oocytes *in vitro* with different concentrations of epidermal growth factor (EGF)

<table>
<thead>
<tr>
<th>IVM treatment</th>
<th>Number of oocytes cultured</th>
<th>Number with germinal vesicles (%)</th>
<th>Number with GVBD (%)</th>
<th>Number of oocytes cultured</th>
<th>Number showing cumulus cell expansion*</th>
<th>Number with germinal vesicles (%)</th>
<th>Number in metaphase II (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF (ng ml⁻¹)</td>
<td>Culture for 6 h</td>
<td></td>
<td></td>
<td>Culture for 16 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33</td>
<td>14 (42.4)</td>
<td>9 (27.2)</td>
<td>32</td>
<td>0 (0.0)</td>
<td>13 (40.6)</td>
<td>12 (37.5)</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>9 (31.0)</td>
<td>15 (51.7)</td>
<td>45</td>
<td>14 (31.1)</td>
<td>10 (22.2)</td>
<td>24 (53.3)</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>6 (24.0)</td>
<td>14 (56.2)</td>
<td>87</td>
<td>42 (48.2)</td>
<td>10 (11.4)</td>
<td>64 (73.5)</td>
</tr>
<tr>
<td>50</td>
<td>27</td>
<td>7 (25.9)</td>
<td>17 (62.9)</td>
<td>68</td>
<td>32 (47.0)</td>
<td>7 (10.2)</td>
<td>49 (72.0)</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>6 (25.0)</td>
<td>15 (62.5)</td>
<td>37</td>
<td>17 (45.9)</td>
<td>6 (16.2)</td>
<td>22 (59.4)</td>
</tr>
</tbody>
</table>

Data from nine replicates were pooled.

IVM: *in vitro* maturation; GVBD: germinal vesicle breakdown.

*Cumulus cell expansions are the number of complexes with partial and full expansion/number of cultured oocytes.

Different superscripts within columns denote significant differences (P < 0.05).
Table 2. Nuclear maturation and cumulus cell expansion in rabbit cumulus–oocyte complexes after culture for 6 h and 16 h during maturation of oocytes *in vitro* with different concentrations of insulin-like growth factor I (IGF-I).

<table>
<thead>
<tr>
<th>IVM treatment</th>
<th>Number of oocytes cultured</th>
<th>Number with germinal vesicles (%)</th>
<th>Number with GVBD (%)</th>
<th>Number of oocytes cultured</th>
<th>Number showing cumulus cell expansion* (%)</th>
<th>Number with germinal vesicles (%)</th>
<th>Number in metaphase II (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39</td>
<td>17 (43.5)</td>
<td>9 (23.1)*</td>
<td>45</td>
<td>1 (2.2)</td>
<td>17 (37.7)*</td>
<td>14 (31.1)*</td>
</tr>
<tr>
<td>50</td>
<td>91</td>
<td>32 (35.1)</td>
<td>42 (52.7)</td>
<td>62</td>
<td>3 (4.8)</td>
<td>5 (8.1)</td>
<td>52 (83.8)</td>
</tr>
<tr>
<td>100</td>
<td>72</td>
<td>26 (36.1)</td>
<td>41 (56.9)</td>
<td>71</td>
<td>4 (5.6)</td>
<td>5 (7.0)</td>
<td>60 (84.5)</td>
</tr>
<tr>
<td>200</td>
<td>78</td>
<td>22 (28.2)</td>
<td>39 (50.0)</td>
<td>81</td>
<td>4 (4.9)</td>
<td>12 (14.8)</td>
<td>50 (61.7)</td>
</tr>
</tbody>
</table>

Data from nine replicates were pooled.

In vitro maturation: GVBD: germinal vesicle breakdown.

*Cumulus cell expansions are the number of complexes with partial and full expansion/number of cultured oocytes.

Different superscripts within columns denote significant differences (P < 0.05).
Table 3. Nuclear maturation and cumulus cell expansion in rabbit cumulus–oocyte complexes after culture for 6 h and 16 h during maturation of oocytes in vitro with different concentrations of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I)

<table>
<thead>
<tr>
<th>IVM treatment EGF (ng ml⁻¹)</th>
<th>IGF-I (ng ml⁻¹)</th>
<th>Number of oocytes cultured</th>
<th>Number with germinal vesicles (%)</th>
<th>Number with GVBD (%)</th>
<th>Number of oocytes cultured</th>
<th>Number showing cumulus cell expansion*</th>
<th>Number with germinal vesicles (%)</th>
<th>Number in metaphase II (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>13 (43.3)</td>
<td>6 (20.0)</td>
<td>41</td>
<td>1 (2.4)</td>
<td>15 (36.5)</td>
<td>14 (34.1)</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>49</td>
<td>20 (40.8)</td>
<td>26 (53.1)</td>
<td>51</td>
<td>29 (56)</td>
<td>6 (11.6)</td>
<td>40 (78.4)</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>54</td>
<td>21 (38.8)</td>
<td>31 (57.4)</td>
<td>63</td>
<td>43 (68.2)</td>
<td>6 (9.5)</td>
<td>52 (82.5)</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>69</td>
<td>21 (30.4)</td>
<td>42 (60.8)</td>
<td>46</td>
<td>32 (69.3)</td>
<td>6 (13.1)</td>
<td>37 (80.4)</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>45</td>
<td>12 (26.6)</td>
<td>29 (64.4)</td>
<td>75</td>
<td>54 (72.0)</td>
<td>7 (9.3)</td>
<td>62 (82.6)</td>
</tr>
</tbody>
</table>

Data from nine replicates were pooled.

IVM: in vitro maturation. GVBD: germinal vesicle breakdown.

*Cumulus cell expansions are the number of complexes with partial and full expansion/number of cultured oocytes.

Different superscripts within columns denote significant differences (P < 0.05).
Table 4. Nuclear maturation in denuded oocytes from rabbits after culture for 6 h and 16 h during maturation of oocytes in vitro with different concentrations of epidermal growth factor (EGF) and/or insulin-like growth factor I (IGF-I)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration (ng ml⁻¹)</th>
<th>Number of oocytes cultured</th>
<th>Number showing GVBD (after 6 h culture) (%)</th>
<th>Number of oocytes cultured</th>
<th>Number in metaphase II (after 16 h culture) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF</td>
<td>0</td>
<td>30</td>
<td>7 (23.3)</td>
<td>21</td>
<td>6 (28.5)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>31</td>
<td>8 (25.8)</td>
<td>25</td>
<td>6 (24.0)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>28</td>
<td>7 (25.0)</td>
<td>25</td>
<td>7 (28.0)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>30</td>
<td>8 (26.6)</td>
<td>27</td>
<td>9 (33.3)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>31</td>
<td>9 (29.0)</td>
<td>20</td>
<td>6 (30.0)</td>
</tr>
<tr>
<td>IGF-I</td>
<td>0</td>
<td>21</td>
<td>4 (19.0)</td>
<td>24</td>
<td>7 (29.1)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>25</td>
<td>7 (29.1)</td>
<td>30</td>
<td>9 (30.0)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>26</td>
<td>7 (26.9)</td>
<td>32</td>
<td>11 (34.3)</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>28</td>
<td>6 (21.4)</td>
<td>20</td>
<td>6 (30.0)</td>
</tr>
<tr>
<td>EGF + IGF-I</td>
<td>0</td>
<td>25</td>
<td>6 (24.0)</td>
<td>25</td>
<td>6 (24.0)</td>
</tr>
<tr>
<td></td>
<td>10 + 50</td>
<td>30</td>
<td>8 (26.6)</td>
<td>27</td>
<td>7 (25.9)</td>
</tr>
<tr>
<td></td>
<td>10 + 100</td>
<td>33</td>
<td>8 (24.2)</td>
<td>22</td>
<td>7 (31.8)</td>
</tr>
<tr>
<td></td>
<td>50 + 50</td>
<td>27</td>
<td>7 (25.9)</td>
<td>28</td>
<td>8 (28.7)</td>
</tr>
<tr>
<td></td>
<td>50 + 100</td>
<td>29</td>
<td>7 (24.1)</td>
<td>25</td>
<td>7 (29.1)</td>
</tr>
</tbody>
</table>

Data from nine replicates were pooled.
GVBD: germinal vesicle breakdown.

There were no significant differences between treatments for any of the combinations or concentrations of growth factors used.

results for cumulus expansion. Since IGF-I receptors have been detected in granulosa cells and oocytes (Balboni et al., 1987), it is possible that the lack of significant effect on cumulus expansion may be due to IGF-I interfering with the production of an expansion factor produced by the oocyte itself (Buccione et al., 1990). However, the use of EGF and IGF-I combined induced slightly more cumulus expansion than with EGF alone, indicating an additive effect for these growth factors.

The present study confirmed that the growth factors tested stimulated nuclear maturation of rabbit oocytes in vitro in a dose-dependent manner, with the greatest effects at concentrations of 10–50 ng EGF ml⁻¹ and 100 ng IGF-I ml⁻¹. These factors, which have been shown to stimulate meiotic resumption in other species, had not been tested for their effect on oocyte maturation in rabbits. The highest percentages for EGF-induced nuclear maturation correspond to those obtained in rodent oocytes (Dekel and Sherizly, 1985; Downs, 1989). Downs et al. (1988) reported that EGF significantly increased cAMP concentrations in rodent oocytes, and that cAMP generated a positive maturation signal in cumulus cells in response to EGF stimulation. Such high rates of maturation can be attributed to the fact that the main agent involved in the inhibition of meiotic resumption in the oocytes of these species is the stimulation of cAMP-dependent protein kinase. However, in their response to protein kinase stimulation via cAMP accumulation, oocytes from the above species could differ from rabbit oocytes (Sirard et al., 1992) upon which EGF fails to act in the same way.

In contrast to observations in pigs (Reed et al., 1993) and cattle (Lorenzo et al., 1994), the highest results in nuclear maturation were achieved with IGF-I, which affected rabbit oocyte maturation in vitro to the same extent as EGF does in the above-mentioned species. IGF-I does not stimulate germinal vesicle breakdown in mouse oocytes (Downs, 1989) but does stimulate the resumption of meiosis in rat oocytes (Dekel and Sherizly, 1985). Hainaut et al. (1991) postulated that oocyte maturation with IGF-I is initiated upon activation of the membrane receptor for this growth factor and requires tyrosine dephosphorylation of p34, the kinase component of maturation promoting factor (MPF).

It has been demonstrated that these growth factors can be synthesized by the ovary (May et al., 1987). EGF and EGF-like substances have been found in pig (13.6 ng ml⁻¹; Hsu et al., 1987), and human (0.00–31.3 ng ml⁻¹; Hoffmann et al., 1990) follicular fluids at concentrations similar to those used in the study reported here. Moreover, concentrations of IGF-I, similar to those used in the present study, have been detected in bovine and porcine follicular fluid (Hammond et al., 1988; Echternkamp et al., 1990). Receptors for IGF-I and EGF have been demonstrated in rat granulosa cells (Adashi et al., 1988; Rose et al., 1991), and specific binding of EGF to bovine and porcine cumulus cells has been observed (Fuginaga et al., 1992). Binding of growth factors to their receptors promotes the generation of signals and second messengers in the membrane and cytoplasm. These events may be involved in the signalling pathway leading to protein synthesis and phosphorylation, which would help to explain the physiological role of growth factors in oocyte maturation (Harper and Brackett, 1993).

The growth factors used in the study reported here enhanced maturation in cumulus–oocyte complexes but not in the denuded oocyte. This result is in agreement not only with the results observed in cattle (Sanbuissno et al., 1990; Lorenzo et al., 1993) and rodents (Deckel and Sherizly, 1985; Downs, 1989), but also with those obtained using transforming growth factor α, which has similar effects to EGF in vitro (Brucker et al., 1990).
and binds to the same receptor species (Massagué, 1983). A recent study in pig oocytes concluded that the action of EGF is mediated via the cumulus cells and gap junctions with the oocyte (Coskum and Lin, 1993). Since IGF-I or EGF could not enhance spontaneous maturation of denuded oocytes, either alone or together, our data seem to support the hypothesis that the growth factors act in the presence of the cumulus cells, via which a positive stimulus for maturation is transferred to the oocyte. This stimulatory signal(s) promotes oocyte maturation and can subsequently also disrupts oocyte communication with the cumulus cells.

Collectively, the present findings suggest that, at least in rabbits, the addition of IGF-I to the maturation medium results in more oocytes undergoing nuclear maturation than does the addition of EGF. No significant additive effect was observed when both growth factors were added to the maturation medium, as previously observed in bovine oocytes (Lorenzo et al., 1994), although the cumulus expansion rate was slightly enhanced when EGF plus IGF-I were added together. This result indicates that, at least in rabbits, EGF stimulation affects both cumulus cell expansion and nuclear oocyte maturation, while IGF action only significantly affects nuclear maturation; however, all these stimulatory actions are only possible in oocytes that are surrounded by cumulus cells.

Growth factors are now being considered as potential regulators of ovarian function and follicular development; they may be a ‘key’ factor in the regulation of intrafollicular oocyte maturation. It is also possible that EGF and IGF-I interact with gonadotropins, steroids and other molecules to regulate oocyte follicular development in vitro. The study reported here provides evidence that EGF either alone or in conjunction with IGF-I stimulates cumulus expansion. The addition of IGF-I or EGF or both factors enhances nuclear maturation in immature rabbit oocytes in vitro and this effect is mediated by the presence of cumulus cells. These findings may serve to explain the mechanism of agents involved in the generation of signals regulating oocyte maturation processes.

The authors thank T. Calduch and M. L. Latorre for their assistance, and H. Montero for taking care of the animals.

References

Buccione R, Vanderhyden BC, Caron PJ and Eppig JJ (1990) FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte Developmental Biology 138 16–25.

by the addition of epidermal growth factor and insulin-like growth factor I.

Journal of Reproduction and Fertility 101 697–701

Massague J (1983) Epidermal growth factor-like transforming growth factor II.
Interaction with epidermal growth factor receptor in human placenta membranes and A431 cells.
Journal of Biological Chemistry 258 13 614–13 620

Endocrinology 120 2413–2420

Endocrinology 124 2671–2679

Journal of Experimental Zoology 266 74–78

Biology of Reproduction 44 (Supplement 1) 148

Assisted Reproductive Technology Andrology 1 143–153

Theriogenology 33 477–485

Sirard MA, Coenen K and Bilodeau S (1992) Effects of fresh or cultured follicular fractions on meiotic resumption in bovine oocytes.
Theriogenology 37 39–58

Tonetta SA and DiZerega GS (1989) Intragonadal regulation of follicular maturation.
Endocrine Reviews 10 205–229

Endocrinology 119 550–558

Journal of Endocrinology 127 363–367

Endocrinology 131 351–356

Theriogenology 35 301.