Effect of a selective prostaglandin H synthase-2 inhibitor (NS-398) on prostaglandin production by the guinea-pig uterus

E. K. Naderali* and N. L. Poyser†

Department of Pharmacology, University of Edinburgh Medical School, 1 George Square, Edinburgh, EH8 9JZ, UK

Using guinea-pig uterine tissues, indomethacin (a non-selective inhibitor of prostaglandin H synthase) inhibited prostaglandin (PG) synthesis by homogenates of the endometrium, by cultured endometrium and myometrium, and by cultured epithelial glandular cells and stromal cells derived from the endometrium. NS-398, a selective inhibitor of prostaglandin H synthase-2 (PGHS-2), also inhibited PG synthesis by endometrial homogenates, by cultured endometrium and myometrium, and by cultured epithelial glandular cells and stromal cells. Indomethacin and NS-398 inhibited PG production to similar extents, except for 6-keto-PGF₁α production by the myometrium where indomethacin was more effective. In particular, indomethacin and NS-398 produced over 90% inhibition of PGF₂α output from the epithelial glandular cells, the main source of PGF₂α in the endometrium. These functional studies indicate that prostaglandin H synthase-2 is the predominant PG-forming enzyme in the guinea-pig uterus.

Introduction

Increased production of prostaglandin (PG) F₂α by the uterus towards the end of the oestrous cycle is responsible for luteolysis in some non-primate mammals including guinea-pigs (see Poyser, 1995). Prostaglandins are not stored in tissues, including the guinea-pig uterus (Poyser, 1972), so their release is immediately preceded by their synthesis. Prostaglandins of the 2-series are synthesized from arachidonic acid; the first step involves the conversion of arachidonic acid to PGH₂ by prostaglandin H synthase (PGHS; see Lands, 1979). This single enzyme has two separate actions, namely cyclooxygenase activity which converts arachidonic acid to PGG₂ and peroxidase activity which converts PGG₂ to PGH₂. Non-steroidal anti-inflammatory drugs (NSAID) inhibit the cyclooxygenase activity, but not the peroxidase activity, of PGHS (see Smith and Marnett, 1993). Indomethacin inhibits prostaglandin synthesis by the guinea-pig uterus (Poyser, 1972), and the intra-uterine administration of indomethacin to guinea-pigs prevents regression of the corpus luteum and increases the duration of the oestrous cycle (Horton and Poyser, 1973; Poyser and Horton, 1975).

Since these earlier studies, it has now been established that there are two isoenzyme forms of PGHS namely PGHS-1 and PGHS-2 (Fu et al., 1990; Wong and Richards, 1991; Sirois and Richards, 1992). This raises the question as to which form is responsible for PGF₂α production by the uterus. Studies using western blotting techniques have shown that PGHS-2 is present in the guinea-pig endometrium on days 6 and 17 of the oestrous cycle (Naderali and Poyser, 1994). Consequently, the present study has investigated the functional significance of PGHS-2 in the guinea-pig uterus by using the selective PGHS-2 inhibitor NS-398 (N-(2-cyclohexyloxy-4-nitrophenyl)methanesulphonamide). This compound is of similar potency to indomethacin at inhibiting PGHS-2 but, in contrast to indomethacin, has no inhibitory effect on PGHS-1 (Funaki et al., 1993, 1994). Therefore, the effects of NS-398 and indomethacin on PG production by the guinea-pig uterus were compared.

Materials and Methods

Virgin, Dunkin–Hartley guinea-pigs (600–900 g) were examined daily and a vaginal smear was taken when the vagina was open. Day 1 of the oestrous cycle was taken as the day preceding the post-ovulatory influx of leucocytes when cornification was at a maximum. All guinea-pigs had exhibited at least three cycles of normal duration before being killed (by stunning and incising the neck) on day 7 or day 15 of the cycle. Four guinea-pigs on day 7 were used in Expts 1–3, and four guinea-pigs on day 15 were used in Expt 1. The uterus from each guinea-pig was removed and used in one of the following experiments.

Experiment 1: effects of NS-398 and indomethacin on prostaglandin synthesis by homogenates of day-7 and day-15 endometrium

Each uterus was divided into its two horns, and each horn was ‘opened’ by cutting longitudinally. The endometrium was carefully cut away in small pieces from the myometrium by
using a pair of fine scissors. This technique results in > 85% separation of the two tissues (Leaver and Poyser, 1981). The endometrium from each animal was divided into five approximately equal amounts, blotted dry and weighed. Each sample of endometrium was homogenized in 10 ml Kreb's solution (for composition see Mitchell et al., 1977) containing 100 µl ethanol (control), indomethacin (14 and 28 µmol l⁻¹) or NS-398 (16 and 32 µmol l⁻¹) and then incubated for 60 min at 37°C. The pH of the incubates was lowered to pH 4 with 1 mol HCl l⁻¹, and the prostaglandins extracted by shaking twice with 20 ml ethyl acetate. The ethyl acetate fractions were combined and evaporated to dryness at 50°C on a rotary evaporator. Each dried extract was redissolved in 4 ml ethyl acetate and stored at −20°C. The amounts of PGF₂α, PGE₂, and 6-keto-PGF₁α in the extracts were measured by radioimmunoassay.

Experiment 2: effects of NS-398 and indomethacin on prostaglandin output from cultured endometrium and myometrium

The endometrium and myometrium in each uterine horn were separated as in Expt 1. Each tissue type was cut into small pieces (2 mm x 1 mm) and placed on a raised platform in a Petri dish which contained 4 ml Medium 199 plus Earle’s salts and supplemented with L-glutamine (1.7 µmol l⁻¹), amphotericin B (2.5 µg ml⁻¹), penicillin (100 U ml⁻¹) and streptomycin (100 µg ml⁻¹). Ten culture dishes were prepared from each tissue; four of the dishes contained 20 µl ethanol (controls), and the remaining dishes were treated in duplicate with indomethacin (14 and 28 µmol l⁻¹) or NS-398 (16 µmol l⁻¹). The Petri dishes were placed in Kilner jars and incubated for 24 h as described by Ning et al. (1983). The cultured tissue remains viable for at least 72 h (Ning et al., 1983). The culture medium was changed after 2, 8, and 24 h, and the samples of culture medium were stored at −20°C. The tissue in each Petri dish was blotted dry and weighed. The amounts of PGF₂α, PGE₂, and 6-keto-PGF₁α in the samples of culture medium were measured, without extraction, by radioimmunoassay.

Experiment 3: effects of NS-398 and indomethacin on prostaglandin output from cultured epithelial glandular cells and stromal cells

For each uterus, the endometrium was separated from the myometrium as in Expt 1. The endometrial cells were dissociated according to the method of Stayasawaroop et al. (1979) as modified by Chaminadas et al. (1986). In summary, pieces of endometrium were chopped into small fragments and were placed in 10 ml Nutrient Mixture F-10 Ham containing Hepes (20 mmol l⁻¹), 30% (v/v) heat-treated newborn calf serum, collagenase Type 1 (2 mg ml⁻¹), L-glutamine (10 mmol l⁻¹), amphotericin B (2.5 µg ml⁻¹), penicillin (100 U ml⁻¹) and streptomycin (100 µg ml⁻¹). The tissue was incubated with shaking at 37°C, during which the tissue fragments were further disrupted by gentle, repeated pipetting every 15 min. The degree of digestion was monitored periodically by decanting a small volume of the suspension into a sterile tissue culture dish and viewing the isolated cells under an inverted microscope. When adequate cell dissociation had been obtained, the remaining tissue fragments were collected by sedimentation and discarded. This digestion process took approximately 2 h. The supernatant cell suspension obtained was centrifuged at 100 g for 5 min. The supernatant (containing stromal cells) was removed, and the pellet containing epithelial glandular cells was twice washed and centrifuged at 100 g for 5 min. The final pellet obtained contained approximately 95% epithelial glandular cells and 5% stromal cells. The supernatant containing the stromal cells was centrifuged at 400 g for 10 min, and a pellet of stromal cells was obtained.

The epithelial glandular cells and stromal cells were resuspended each in 30 to 40 ml Nutrient Mixture F-10 Ham containing Hepes (20 mmol l⁻¹), L-glutamine (10 mmol l⁻¹), amphotericin B (2.5 µg ml⁻¹), penicillin (100 U ml⁻¹) and streptomycin (100 µg ml⁻¹). Samples (2.5 ml) of both cell suspensions were dispensed into each of 12 wells of a cell culture plate. The epithelial glandular cell suspensions contained 2.3 × 10⁴ to 4.5 × 10⁴ cells ml⁻¹, and the stromal cell suspensions contained 2.2 × 10⁵ to 5.6 × 10⁵ cells ml⁻¹. Cell culture plates were incubated at 37°C in a humidified atmosphere of 5% CO₂ and 95% air. By 24 h after plating, the epithelial glandular cells had lost their shape and had become flattened to form a monolayer. Stromal cells were attached to the plastic surface, and by day 2 of culture a confluent layer of cells was formed. The medium in each well was changed every 72 h, and the cells were cultured for 6 days before being treated with 20 µl ethanol (control), indomethacin (14 µmol l⁻¹) or NS-398 (16 µmol l⁻¹). The cells were cultured for a further 24 h, and the culture medium was changed after 2, 8 and 24 h. The samples of culture medium were stored at −20°C. The amounts of PGF₂α, PGE₂, and 6-keto-PGF₁α in each sample were measured, without extraction, by radioimmunoassay.

Cell viability at the time of plating and at the end of the culture was determined using a trypan blue exclusion method. 0.4 ml 0.4% (w/v) trypan blue solution was added to 0.1 ml of a cell suspension prepared in Hank's balanced salts solution. After standing for 10 min, the cells were washed and then counted in a haemocytometer to ascertain cell viability. Cell viability at the time of plating was > 98%, and after culture was > 95%.

Radioimmunoassays

The amounts of PGF₂α, PGE₂, and 6-keto-PGF₁α in each sample were measured by radioimmunoassay using antibodies raised in this laboratory; the cross-reactivities have been reported elsewhere (Poyser, 1987). When samples of culture medium were assayed directly, an equivalent amount of culture medium was added to the assay standards. The intra- and interassay coefficients of variation for the assays were < 12%. The detection limit was 10–30 pg PG per assay tube.

Sources of material

NS-398 was kindly supplied by Taisho Pharmaceutical Co. Ltd, Tokyo and indomethacin by Merck, Sharpe and Dohme, Ltd, Hoddesdon, Herts. Medium 199 plus Earle’s salts, L-glutamine and amphotericin B were purchased from Flow Laboratories, Irvine. Nutrient Mixture F-10 Ham, Hank’s...
endometrial

28

(P

respectively.

Statistical

Statistical

*Significantly

Significantly

*(P < 0.05)

*(P < 0.05)

*Significantly

*Significantly

(paired

homogenates

at

Thame.

The

Statistical
tests

The results were analysed by ANOVA, Student’s t test, and the paired t test, as appropriate.

Results

Experiment 1: effects of NS-398 on prostaglandin synthesis by homogenates of day-7 and day-15 endometrium

The amounts of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} synthesized by homogenates of guinea-pig endometrium were 3.0-, 1.8- and 1.4-fold higher on day 15 than on day 7 of the cycle, respectively. These differences were statistically significant (P < 0.05) for PGF\textsubscript{2\alpha} and PGE\textsubscript{2} (Fig. 1). Indomethacin (14 and 28 \mu mol 1-1) significantly (P < 0.05) inhibited by 46–80\% the synthesis of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} by guinea-pig endometrial homogenates on days 7 and 15 of the cycle. There were no significant differences between the two concentrations used (Fig. 1). NS-398 (16 and 32 \mu mol 1-1) significantly (P < 0.05) inhibited by 42–65\% the synthesis of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} by guinea-pig endometrial homogenates on both days of the cycle, and there were no significant differences between the two concentrations used (Fig. 1). However, at approximately similar concentrations, NS-398 was significantly (P < 0.05) less effective at inhibiting the synthesis of PGF\textsubscript{2\alpha} and PGE\textsubscript{2} but not of 6-keto-PGF\textsubscript{1\alpha} by endometrial homogenates on day 7 but not on day 15 (Fig. 1).

Experiment 2: effects of NS-398 and indomethacin on prostaglandin output from cultured endometrium and myometrium

The control outputs of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} from both the endometrium and myometrium significantly (P < 0.05) declined during culture, except for PGF\textsubscript{2\alpha} output from the endometrium which significantly (P < 0.05) increased between the second and third periods of culture (P < 0.05; Fig. 2). Indomethacin (14 and 28 \mu mol 1-1) and NS-398 (16 \mu mol 1-1) significantly (P < 0.05) inhibited by 25–95\% the outputs of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} from cultured endometrium and myometrium, except for PGE\textsubscript{2} output from the myometrium during the second and third periods of culture. However, the basal output of PGE\textsubscript{2} from the myometrium during these periods was very low, and both drugs tended to decrease it further. The degree of inhibition by both drugs on the outputs of the three PGs increased with time. NS-398 in a similar concentration to indomethacin was as effective as indomethacin at inhibiting PG output, except for 6-keto-PGF\textsubscript{1\alpha} output from the myometrium during all three culture periods while NS-398 was significantly (P < 0.05) less effective than indomethacin (Fig. 2).

Experiment 3: effects of NS-398 and indomethacin on prostaglandin output from cultured epithelial glandular cells and stromal cells

On the experimental day (i.e. the seventh day) of culture, the respective initial outputs of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} were significantly (P < 0.05) 400-, 110- and 140-fold higher from epithelial glandular cells than from stromal cells (Fig. 3). The outputs of the three PGs significantly (P < 0.05) decreased with time from both cell types over the 24 h culture period.

Indomethacin (14 \mu mol 1-1) and NS-398 (16 \mu mol 1-1) significantly (P < 0.05) inhibited by 20–95\% the outputs of PGF\textsubscript{2\alpha}, PGE\textsubscript{2} and 6-keto-PGF\textsubscript{1\alpha} from both epithelial glandular cells and stromal cells, except for PGE\textsubscript{2} output from stromal cells during the third period of culture. Indomethacin and NS-398 were of similar potency at inhibiting PG output, and they were particularly effective at inhibiting (> 90\%) the output of PGF\textsubscript{2\alpha} from epithelial glandular cells during the second and third periods of culture (Fig. 3).

Discussion

The presence of the endometrium in the guinea-pig is essential for luteolysis to occur at the normal time (Butcher et al., 1962).
This is consistent with the endometrium being the major site of PGF_{2α} synthesis in the guinea-pig (Poyser, 1983). The present study has shown that the epithelial glandular cells, and not the stromal cells, are the major cell type in the guinea-pig endometrium responsible for synthesizing PGF_{2α}. This agrees with studies in other species (see Poyser, 1995). Previous studies have shown that indomethacin inhibits PG synthesis by homogenates of guinea-pig uterus and by guinea-pig endometrium in culture (Poyser, 1972; Leckie and Poyser, 1990). In the study reported here on guinea-pig uterine tissues, indomethacin inhibited PG synthesis by homogenates of the endometrium, by cultured endometrium and myometrium, and by cultured epithelial glandular cells and stromal cells obtained from the endometrium. Indomethacin is a non-selective PGHS inhibitor, although there is evidence that it has a more potent action on PGHS-1 than on PGHS-2 (Mitchell et al., 1993).

On guinea-pig uterine tissues, NS-398 inhibited PG synthesis by endometrial homogenates, by cultured endometrium and myometrium, and by epithelial glandular cells and stromal cells in culture. NS-398 is a selective inhibitor of PGHS-2 and has no significant inhibitory effect on PGHS-1 (Futaki et al., 1993, 1994; Masferrer et al., 1994). NS-398 was of similar potency to indomethacin at inhibiting PG synthesis by most uterine tissues. In particular, after 2 h of treatment, indomethacin and NS-398 both inhibited PGF_{2α} output from cultured epithelial glandular cells by over 90%. Since it has been reported that NS-398 and indomethacin have similar inhibitory potencies on PGHS-2 (Futaki et al., 1994), the present study suggests that PGHS-2 is the main isoenzyme form of PGHS responsible for PGF_{2α} synthesis by the epithelial glandular cells in the endometrium. PGHS-2 also appears to be involved in PGF_{2α} synthesis by the stromal cells, and in PGE₂ and 6-keto-PGF_{1α} synthesis by the epithelial glandular cells and stromal cells.

Indomethacin and NS-398 were of similar potency at inhibiting the outputs of PGF_{2α} and PGE₂ from guinea-pig myometrium, suggesting that PGHS-2 is the main enzyme responsible for the synthesis of these two PGs by this tissue. Although indomethacin and NS-398 inhibited the output of 6-keto-PGF_{1α} from cultured myometrium, indomethacin was significantly more effective than NS-398 at similar concentrations. This suggests that both PGHS-1 and PGHS-2 may be controlling the synthesis of 6-keto-PGF_{1α} by the myometrium. A selective PGHS-1 inhibitor would be useful to investigate this suggestion.

Regarding other species, it was found that PGHS-2 is probably responsible for PG production by sheep endometrial cotyledons at term (Wimsatt et al., 1993). PGHS-1, but not PGHS-2, is present in the rat uterus (Wong and Richards, 1991). This is true for the pregnant rat endometrium and,

Fig. 2. Mean (± SEM, n = 4) outputs of (i) prostaglandin F_{2α} (PGF_{2α}), (ii) PGE₂ and (iii) 6-keto-PGF_{1α} from day-7 guinea-pig (a) endometrium and (b) myometrium cultured for consecutive periods of 2, 6 and 16 h in the absence (□) and presence of (■) 14 µmol indomethacin 1^{−1}, (□) 28 µmol indomethacin 1^{−1} and (□) 16 µmol NS-398 1^{−1}. *Significantly (P < 0.05) lower than corresponding control value. †Significantly (P < 0.05) higher than corresponding value for indomethacin.
Furthermore, the concentration of PGHS-1 increases from day 16 to day 22, the day of delivery (Myatt et al., 1994). During the oestrous cycle of the rat, PGHS-1 is present in the endometrium throughout the cycle, but PGHS-2 is also present before and during oestrous. PGHS-2 is not detectable during most of dioestrus (Shoda et al., 1995). In endometrial stromal cells obtained from ovariec-tomized rats treated with oestrogen and progesterone to sensitize the uterus for decidualization, interleukin-1α (IL-1α) increases the concentration of mRNA for PGHS-2 but not for PGHS-1 whereas epidermal growth factor increases the concentration of mRNA for both isoforms of PGHS (Bany and Kennedy, 1995). In mice, IL-1α increases the concentration of PGHS-2 but not that of PGHS-1 in endometrial stromal cells (Jacobs et al., 1994). In addition, in mice, PGHS-2 is localized to the implantation sites in newly differentiated endometrial stromal cells, whereas PGHS-1 is found in the epithelial cells (Jacobs et al., 1994). This suggests a functional role also for PGHS-2 in producing the endometrial prostaglandins necessary for implantation. Which functional form of PGHS is present in the human uterus requires investigating. If the human uterus is like the guinea-pig uterus, in which PGHS-2 is the main functional form in both the endometrium and myometrium, then the use of selective inhibitors of PGHS-2 for treating disorders of menstruation (for example, dysmenorrhoea, menorrhagia) should produce symptomatic relief without producing the gastric damage associated with non-selective inhibitors of PGHS (Futaki et al., 1993).

The technical assistance of L. Turnbull is greatly appreciated.

References

Butcher RL, Chu KY and Melampy RM (1962) Utero-ovarian relationships in the guinea-pig Endocrinology 71 810–815

Horton EW and Poyser NL (1973) Oestrogen of oestrus cycle in the guinea-pig following subcutaneous or intra-uterine administration of indomethacin British Journal of Pharmacology 49 98–103

Lands WEM (1979) The biosynthesis and metabolism of prostaglandins Annual Review of Physiology 41 633–652

Fig. 3. Mean (± SEM; n = 4) outputs of (i) prostaglandin F₂α (PGF₂α), (ii) PGE₂, and (iii) 6-keto-PGF₁α, from (a) epithelial glandular cells and (b) stromal cells obtained from day-7 guinea-pig endometrium and cultured for consecutive periods of 2, 6 and 16 h in the absence and presence of (■) 14 μmol indomethacin h⁻¹ and (□) 16 μmol NS-398 h⁻¹. *Significantly (P < 0.05) lower than corresponding control value.

Mitchell S, Poyser NL and Wilson NH (1977) Effect of p-bromophenacylbromide, an inhibition of phospholipase A2, on arachidonic acid release and prostaglandin synthesis by the guinea-pig uterus British Journal of Pharmacology 59 107–113

Ning ACWS, Leaver HA and Poyser NL (1983) Arachidonic acid uptake into and release from guinea-pig endometrium in vitro on days 7 and 15 of the oestrous cycle Prostaglandins Leukotrienes and Medicine 10 369–380

Poyser NL (1972) Production of prostaglandins by the guinea-pig uterus Journal of Endocrinology 54 147–159

Poyser NL and Horton EW (1975) Plasma progesterone levels in guinea-pigs actively immunised against progstaglandin F1α, hysterectomised or following treatment with intra-uterine indomethacin Journal of Endocrinology 67 507–590

Wong WYL and Richards J (1991) Evidence for two antigenically distinct molecular weight variants of prostaglandin H synthase in the rat ovary Molecular Endocrinology 5 1269–1279

Downloaded from Bioscientifica.com at 12/27/2018 02:54:19PM via free access