Immunolocalization of aromatase P-450 in ovarian tissue from pregnant and nonpregnant mares and in ovarian tumours

E. D. Watson and S. R. M. Thomson

Department of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, Easter Bush, Roslin, Midlothian, EH25 9RG, UK

Aromatase P-450 (P-450_{arom}) is a crucial regulatory enzyme that is necessary for conversion of androgens to oestrogens. Corpora lutea and follicles were obtained from the ovaries of cyclic mares and from mares at day 20 and days 40–70 of pregnancy. The presence of P-450_{arom} within specific cell types was investigated by immunostaining to determine potential sites of oestrogen synthesis. Immunoreactivity for P-450_{arom} was confined to the granulosa layer of non-atretic follicles > 5 mm in diameter and to corpora lutea at all stages of the oestrous cycle and during pregnancy. These findings confirm that aromatization of androgens occurs within the granulosa cells of the preovulatory follicle of the mare and that the corpus luteum of the mare has the capacity for oestrogen production if adequate androgen substrate is available. Granulosa cells in ovarian tissue from three mares with granulosa cell tumours showed little staining for P-450_{arom}, which suggests that these tumours have little aromatizing capacity.

Introduction

The mechanism of steroidogenesis by follicles and corpora lutea in mares remains contentious. Originally it was reported that the primary steroidogenic role of granulosa cells in the preovulatory follicle was to produce progesterone, while the theca interna was responsible for oestradiol production (Short, 1962; Channing and Grieves, 1969; Youndgl, 1971). The corpus luteum was not thought to produce oestrogen (Short, 1964; Mahajan and Samuels, 1974). However, it was also found that, although granulosa and luteal cells had only a limited capacity to produce oestradiol de novo, they could aromatize androgens to oestradiol in vitro (Ryan and Short, 1965; Mahajan and Samuels, 1974; Al-Timimi et al., 1989). Interaction between cultured granulosa and theca cells from mare follicles was found to be necessary for oestrogen synthesis, and it was then suggested that androgens of thecal origin were aromatized to oestradiol by granulosa cells (Sirois et al., 1991). Although the corpus luteum of the nonpregnant mare is not thought to produce oestrogen (Short, 1964; Mahajan and Samuels, 1974), recent studies in vivo have provided evidence that corpora lutea from mares that are between 35 and 70 days of pregnancy act as a source of oestrogen (Daels et al., 1991).

Granulosa cell tumour is the most common neoplasm of the mare ovary and represents 2.5% of all equine neoplasms (Sundberg, 1977). These neoplasms are frequently accompanied by behavioural abnormalities that are manifest as anoestrus, nymphomania or stallion-like behaviour. Testosterone concentrations are often increased in mares exhibiting aggressive male-type behaviour and comprise approximately 50% of affected mares (Stabenfeldt et al., 1979). However, concentrations of oestradiol in mares with granulosa cell tumours are variable and are often not related to the behavioural changes (Stabenfeldt et al., 1979). It has been proposed that aromatization of testosterone to oestradiol may be low in affected mares, as mares with very high concentrations of circulating testosterone do not necessarily have concomitantly high oestradiol concentrations (Stabenfeldt et al., 1979). However, no studies have determined the aromatase activity of equine granulosa cell tumours.

The development of antibodies against various steroidogenic enzymes has allowed detailed examination of ovarian steroidogenesis in other species, but to date there have been no studies in the mare ovary on the expression of steroidogenic enzymes at the cellular level throughout the oestrous cycle and pregnancy. In the ovarian steroidogenic pathway, aromatase cytochrome P-450 (P-450_{arom}) is a crucial regulatory enzyme that is necessary for conversion of androgens to oestrogens. In the present study, ovarian tissue was obtained from mares at various stages of the oestrous cycle, during early pregnancy, and from three mares with granulosa cell tumours, and stained immunohistochemically to detect and localize the cells capable of aromatization.

Materials and Methods

Follicles and corpora lutea were obtained from 20 pony mares aged 4–18 years and weighing 250–380 kg. The stage of cycle was monitored by daily ultrasonographic examination of the ovaries and uterus. Day of ovulation was designated day 0. Ovaries were removed by a colpotomy incision as described by Watson and Sertich (1990). Neuroleptanalgesia was induced

Received 9 February 1996.
by intravenous administration of romifidine (50 µg kg⁻¹; Sedivet, Boehringer Ingelheim Ltd, Bracknell, Berks) and butorphanol (25 µg kg⁻¹; Torbugesic, Willows Francis Veterinary Ltd, Crawley, Surrey). Flunixin meglumine (1 mg kg⁻¹; Finadyne, Schering-Plough Animal Health Ltd, Watford, Herts) was administered immediately after surgery. Corpora lutea were obtained from between two and six mares in early (days 2–3), and mid- (days 7–12) dioestrus, in the early follicular phase (day 16), 1 day after administration of the prostaglandin F₂α analogue cloprostenol (263 µg; Estrumate, Mallinkrodt Veterinary Ltd, Uxbridge, Middlesex) in mid-dioestrus, and during pregnancy (days 20 and days 40–70). Preovulatory follicles were obtained during oestrus (n = 7) and smaller follicles were dissected out of the ovary during dioestrus (n = 5). A jugular blood sample was collected from all mares before surgery and the plasma was stored at −20°C until assayed for progesterone. Granulosa cell tumours were obtained from a further three mares by midline laparotomy under general anaesthesia. Serum concentrations of testosterone and oestradiol were determined by a commercial laboratory (SCL Bioscience Services Ltd, Cambridge) in samples taken before surgery from these three mares.

Tissue was embedded in OCT compound (Miles Inc., Elkhart, IN) on cork disks and snap frozen in a slurry of isopentane–dry ice. The samples were then stored at −70°C.

Immunostaining procedures

Sections (6 µm) were immunostained using an avidin–biotin complex method described by Watson and Thomson (1996). The primary antibody, which was kindly provided by E. Simpson (University of Texas), was raised in rabbits against synthetic aromatase cytochrome P-450, and used at a final concentration of 50 µg ml⁻¹. The chromagen used (AEC; 3-amino-9-ethylcarbazole) produced a red reaction product and the sections were counterstained with Meyer’s haematoxylin.

Negative control sections in which the first antibody was replaced with normal horse serum, and positive controls of horse testis, were included with each batch of samples.

Assay of plasma progesterone

Progesterone concentrations were determined in unextracted plasma using a radioimmunoassay kit (ICN Biomedicals Inc., Costa Mesa, CA) employing an ¹²⁵I-progesterone tracer (Watson et al., 1995). The limit of detection of the standard curve was 0.25 ng ml⁻¹ and the inter- and intra-assay coefficients of variation were 6.0 and 6.8%, respectively.

Results

Circulating progesterone concentrations in all mares were > 1 ng ml⁻¹ except for mares in early follicular phase and on the day after treatment with prostaglandin F₂α.

Immunoreactivity for P-450arom was confined to the granulosa cells of non-atretic follicles > 5 mm in diameter (Fig. 1). The granulosa cells of small follicles < 5 mm in diameter and the lining of atretic follicles did not stain. No staining for P-450arom was detected in the thecal cells, stromal cells or preantral follicles.

The early corpus luteum showed many strongly staining luteinizing granulosa cells (Fig. 2a). After structural reorganization of the corpus luteum in mid-dioestrus, there was overall weak immunoreactivity with patchy, strongly stained large cells (Fig. 2b). Cells within the trabeculae did not show staining. On day 16, when the corpora lutea started to show structural changes associated with luteolysis, they still retained the same staining pattern as in mid-dioestrus. This pattern also persisted in corpora lutea obtained 24 h after administration of cloprostenol. These staining patterns were consistently present in replicate sections stained on different days.

On day 20 of pregnancy, uniformly pale immunostaining was present. Dark-staining cells were not apparent (Fig. 3a, but by days 40–70 dark staining cells were again obvious (Fig. 3b). In one secondary corpus luteum removed on day 50 that had ova!dated 10 days previously, patches of darkly staining non-luteinized granulosa cells were seen.

Two of the mares with granulosa cell tumours had low testosterone and oestrogen concentrations (testosterone = 0.28 and 0.06 nmol l⁻¹, oestradiol = < 20 pmol l⁻¹) and one had increased concentrations (testosterone = 1.0 nmol l⁻¹, oestradiol = 230 pmol l⁻¹). Granulosa cells from the tumours of the mares with low testosterone showed very little staining for P-450arom. Only occasional individual cells were strongly positive (Fig. 4). In the mare with increased concentrations of blood testosterone and oestradiol, occasional groups of granulosa cells showed positive staining.

In sections in which the primary antibody was excluded, there was no evidence of endogenous peroxidase activity (Fig. 5a). In positive controls (testis), interstitial cells stained, whereas no staining was observed in the seminiferous tubules (Fig. 5b).

Discussion

This is the first report of immunolocalization of P-450arom in equine ovarian tissue. A homologous antibody for equine P-450arom was not available, but aromatase is known to have

Fig. 1. Immunoreactivity of P-450arom in a 30 mm preovulatory follicle taken from a mare's ovary. Note localization of staining in granulosa cells (arrow). Sections were counterstained with Meyer's haematoxylin. Scale bar represents 10 µm.
wide sequence homology among different species (Simpson et al., 1994) and a heterologous antibody has previously been found to recognize interstitial cells in stallion testes (Eisenhauer et al., 1995). In fact, stallion testis was used as the positive control in our study and staining was confined to interstitial cells as previously reported (Eisenhauer et al., 1995).

Immunoreactivity to P-450_{arom} was present in the granulosa cells of medium to large ovarian follicles but was absent in small follicles (<5 mm). Measurement of steroid concentrations in follicular fluid from mares has shown that highest concentrations are present in large vascularized follicles, with only low concentrations present in small follicles (Short, 1961; Van Rensburg and Van Niekerk, 1968; Channing and Grieves, 1969). This finding is in agreement with the lack of enzyme immunoreactivity in small follicles in our study. Atretic follicles, in which the separate identity of the theca and granulosa cells was lost, showed no evidence of immunoreactive P-450_{arom}. Concentrations of oestrogen are very low in these follicles (Kenney et al., 1979). Results from cell culture experiments and analysis of steroid content of follicular fluid have led to the conclusion that the theca interna is responsible for oestrogen synthesis in the preovulatory follicle of the mare (Short, 1962; Channing and Grieves, 1969; Younclai, 1971; Hay et al., 1975). However more recent studies have suggested

that testosterone is the main product of cultured equine thecal cells, and that androgens of thecal origin may be aromatized to oestradiol by granulosa cells (Sirois et al., 1991; Tucker et al.,...
Fig. 5. (a) Negative control section of corpus luteum from the ovary of a mare in which the primary antibody for aromatase P-450 was excluded. (b) Positive control section of stallion testis. No immunostaining for aromatase P-450 was present in the seminiferous tubules, whereas the surrounding interstitial cells stained positive. Scale bars represent 10 μm.

1991). Culture of isolated cell types can be subject to contamination with other cell populations (Ryan and Short, 1965) and to changes that can transform cells in vitro such as the propensity for granulosa cells to luteinize in vitro (Channing, 1969). In situ detection of enzyme by immunohistochemical staining does not allow quantitation of enzyme content, but does localize the enzymes to specific cell types. The results of the present study would indicate, therefore, that aromatization of androgens is confined to granulosa cells within the follicle.

Most studies agree that oestradiol is not present in the corpus luteum of the nonpregnant mare (Short, 1964; Mahajan and Samuels, 1974); however, luteal cells and microsomes from corpora lutea appeared to be capable of aromatizing testosterone and androstenedione when these were provided as substrates (Mahajan and Samuels, 1974; Al-Timimi et al., 1989). Furthermore, the presence of oestradiol in the mid-luteal corpus luteum was reported by Younglai (1971) and there is unpublished circumstantial evidence that oestrogen secretion increases during the mid-luteal phase and decreases rapidly after administration of PGF₂α (cited in Daels et al., 1991). We have shown that immunoreactive P-450arom is present in luteal cells throughout dioestrus. Therefore, the potential for oestrogen production resides within the corpus luteum of the cyclic mare. Although thecal cells are present in the trabeculae of the corpus luteum (Harrison, 1946), and small luteal cells that might be expected to be of thecal origin are steroidogenic (Kelly et al., 1988; Broadley et al., 1994), the small thecal-derived cells are vastly outnumbered by the granulosa-derived cells. As the granulosa-derived cells appear to depend on the theca-derived cells for androgen substrate, the ability of the corpus luteum to produce androgens and oestrogens may be directly related to the extent to which thecal cells contribute to the corpus luteum (Henderson and Swanston, 1978). However, there appear to be marked differences in steroidogenic capacities of ovarian cells among species (Hammerstein et al., 1964; Watson and Leask, 1975; Al-Timimi et al., 1989; Lautincik et al., 1994). Most studies have shown that the corpus luteum of the non-pregnant mare does not produce oestrogen. If this is the case, high concentrations of circulating progesterone during dioestrus could inhibit aromatase activity in the mare ovary (Amri et al., 1993) as has been proposed in sows (Gregoraszczuk, 1994) and rats (Fortune and Vincent, 1983). Therefore, factors other than cell type may influence luteal oestrogen production.

In the mare corpus luteum, immunostaining for P-450arom was present shortly after luteolysis, whereas the human corpus luteum demonstrates neither P-450arom immunoreactivity nor mRNA expression after luteal regression (Suzuki et al., 1993). However the corpora lutea examined by Suzuki et al. (1993) were probably older than the mare corpora lutea in the study reported here. The presence of immunoreactivity for aromatase in the mare corpora lutea in the period immediately after luteolysis, when steroid production ceases, suggests that cessation of steroidogenesis is dependent on mechanisms other than disappearance of aromatase. It is thought that PGF₂α may cause luteolysis in domestic species by inhibition of second messenger pathways (Fletcher and Niswender, 1982) rather than by having a direct effect on steroidogenic enzymes.

The mare corpus luteum appears to comprise at least two distinct populations of large luteal cells. Some individual cells stained very heavily for aromatase, whereas the staining in surrounding cells was much weaker. Apparent differences in staining intensities within cell populations have similarly been reported in granulosa cells of preovulatory follicles of rats and mice (Ishimura et al., 1989), interstitial cells in stallion testes (Eisenhauer et al., 1995), and in theca interna cells in follicles of sheep and cattle (Conley et al., 1995), leading to suggestions that there may be functional differences within these populations. Although immunostaining is not a quantitative technique, a significant correlation has been shown between immunointensity for aromatase P-450, measured by computerized image analysis, and enzyme activity (Sasano, 1994). During early pregnancy the difference in staining between cells in the mare corpus luteum was less marked, whereas by day 40, strong areas of staining had returned.

It seems likely that equine chorionic gonadotrophin (eCG), the concentration of which increases around day 35 of pregnancy, acts as the trigger for oestrogen production by the primary corpus luteum. Recent work has shown that treatment with eCG stimulates oestrogen secretion in pregnant mares with a corpus luteum, but not in those in which the corpus luteum has been removed (Daels and Albrecht, 1995). Luteal mRNA encoding aromatase P-450 in the mare corpus luteum...
was lower after the onset of eCG secretion than at any other
stage during pregnancy, despite the increased oestrogen secre-
tion (Albrecht et al., 1995). This observation led to the
suggestion that the increase in luteal oestrogen secretion is due
to post-transcriptional regulation of aromatase activity by eCG
(Albrecht et al., 1995). However, there is usually a good
correlation between concentrations of mRNA encoding aroma-
tase P-450 and amount of enzyme protein (Doody et al.,
1990). The results reported here show the appearance of darker
staining in certain individual cells after the onset of eCG
secretion, which might indicate that these cells were producing
more aromatase than earlier in pregnancy, but the pattern and
intensity of staining was not different from that shown by
corpora lutea from non-pregnant mares. These data suggest
that P-450 17α activity, which provides the androgen substrate,
may be the important limiting factor in secretion of oestrogen
by the corpus luteum of pregnant mares. The appearance of
P-450 17α in luteal cells may be stimulated by eCG. Indeed
P-450 17α has been induced in thecal cells of immature rats by
treatment with eCG and hCG (Ishimura et al., 1990), and
injection of rats with eCG increased total hybridizable tran-
script for P-450 17α (Doody et al., 1991). We have preliminary
evidence that P-450 17α is present in the corpus luteum during
pregnancy but not during the oestrous cycle (Rodger et al.,
1995). Similarly a previous report has described low 17,20
lyase activity of corpora lutea from non-pregnant mares as
demonstrated by the poor capacity of luteal tissue to metabo-
lize progesterone to androgens (Mahajan and Samuels, 1974),
although another study showed that low concentrations of
androgens were produced (Al-Timimi et al., 1989).

The biological significance of any oestrogen secretion by
the primary corpus luteum is questionable as it is well docu-
mented that mares ovarioec tomized on day 34 or 35 of pregnancy
and supplemented with only progestagens can maintain a preg-
nancy until placental steroid production takes over at around
day 100 (Shideler et al., 1982).

Ovarian tumours are relatively common in mares and
account for approximately 5.6% of all neoplasms (Righ et al.,
1985). By far the commonest type of ovarian neoplasm is the
granulosa cell tumour (McEntee, 1990). The failure of the tissue
from two of the granulosa cell tumours to show significant
immunostaining and the low level of staining in the other is
interesting and is similar to immunostaining of human granu-
losa cell tumours (Sasano, 1994). The high circulating oestro-
gen concentrations present in some women with granulosa cell
tumours (Besch et al., 1966) are not characteristic of this tumour
in mares (Stabenfeldt et al., 1979). However, the tumour from
the mare that had higher concentrations of circulating oestro-
diol showed a greater degree of immunostaining. It has been
suggested that aromatization of testosterone to oestradiol may
be low in granulosa cell tumours (Stabenfeldt et al., 1979) and
our results showed that very little aromatase was present.

The results from the present study showed good agreement
between expression of P-450 arom, and recent reports of ster-
oidogenesis by isolated cell types in vitro. Together with our
previous results showing staining for P-450 17α in theca interna
cells of preovulatory follicles (Rodger et al., 1995), we have
confirmed that the two-cell theory of steroidogenesis, in which
thecal androgen is aromatized by granulosa cells (McNatty
et al., 1979; Hillier, 1981), applies to the mare ovary.

The authors would like to thank E. Nikolakopoulos, D. Lawler
and M. Jordan for assistance with the mares. C. Gerstenberg (Equine
Fertility Unit, Newmarket, UK) kindly provided material from one of
the pregnant mares. The aromatase antibody was generously donated
by E. Simpson (University of Texas).

References

and aromatization by equine corpus luteum microsomes Journal of Biological
Chemistry 264 7161–7168

Albrecht BA, MacLeod JN and Daels PF (1995) Cytochrome P450 aromatase
mRNA levels decrease in equine luteal tissue after the onset of chorionic
gonadotropin secretion Biology of Reproduction 52 (Supplement 1) Abstract
221

in the mare ovary during the estrous cycle. Measurement of endogenous
steroids and of their in vitro inhibitory effect Acta Endocrinologica 129
540–543

In vitro biosynthetic studies of endocrine tumors American Journal of Obstetrics
and Gynecology 96 460–477

populations from the mare corpus luteum: comparison of mechanical and
collagenase dissociation Journal of Reproduction and Fertility 102 7–15

Channing CP (1969) Studies on tissue culture of equine ovarian cell types:
pathways of steroidogenesis Journal of Endocrinology 43 403–414

Channing CP and Grieves SA (1989) Studies on tissue culture of equine ovarian
cell types: steroidogenesis Journal of Endocrinology 43 391–402

Conley AJ, Kaminski MA, Dubowsky SA, Jablonka-Shariff A, Redmer DA and
dehydrogenase and P450 17α-hydroxylase during follicular and luteal
development in pigs, sheep and cows Biology of Reproduction 52 1081–1094

Daels PF and Albrecht BA (1995) Equine chorionic gonadotropin (eCG) regu-
lates luteal steroidogenesis in mares Biology of Reproduction 52 (Supplement
1) Abstract 221

Daels PF, DeMoraes JJ, Stabenfeldt GH, Hughes JP and Lasley BL (1991) The
corpus luteum: source of oestrogen during early pregnancy in the mare Journal
of Reproduction and Fertility Supplement 44 501–508

Doody KJ, Lawrence MC, Mason J and Simpson ER (1990) Expression of messen-
ger ribonucleic acid species encoding steroidogenic enzymes in human
follicles and corpora lutea throughout the menstrual cycle Journal of Clinical
Metabolism 70 1041–1045

Doody KJ, Lephart ED, Stirling D, Lawrence MC, Magness BB, McPhail MJ and
Simpson ER (1991) Expression of mRNA species encoding steroidogenic
enzymes in the rat ovary Journal of Molecular Biology 6 153–162

Eisenhauser KM, McCue PM, Nayden DK, Osawa Y and Roser JI (1995) Locali-
zation of aromatase in equine Leydig cells Domestic Animal Endocrinology 11
291–298

Fletcher PW and Niswender GD (1982) Effect of PGF 2α on progesterone
secretion and adrenocortical activity in ovine luteal tissue Prostaglandins
20 803–810

Fortune JE and Vincent SE (1983) Progesterone inhibits the induction of
aromatase activity in rat granulosa cells in vitro Biology of Reproduction 28
1078–1089

Gregoraszczuk EL (1994) Is progesterone a modulator of luteal steroidogenesis
in the pig? A tissue culture approach Folia Histochemica et Cytobiologica 32
31–33

Hammerstein J, Rice BF and Savard K (1964) Steroid hormone formation in
the human ovary. I. Identification of steroids formed in vitro from acetate-1-14C
in the corpus luteum Journal of Clinical Endocrinology and Metabolism 24
597–605

Harrison RJ (1946) The early development of the corpus luteum Journal of
Anatomy 80 160–168

Hay MF, Allen WR and Lewis IM (1975) The distribution of Δ-3β-
hydroxysteroid dehydrogenase in the Graafian follicle of the mare Journal
of Reproduction and Fertility Supplement 23 323–327

Henderson KM and Swanston JA (1978) Androgen aromatization by luteinized
bovine granulosa cells in tissue culture Journal of Reproduction and Fertility
52 131–134

Downloaded from Bioscientifica.com at 12/11/2018 04:31:11PM
via free access


Mahajan DK and Samuels LT (1974) The steroidogenic ability of various cell types of the equine ovary Steroids 24 713–730


Ryan KJ and Short RV (1965) Formation of estradiol by granulosa and theca cells of the equine ovarian follicle Endocrinology 76 108–114

Sasano H (1994) Functional pathology of human ovarian steroidogenesis: normal cycling ovary and steroid-producing neoplasms Endocrine Pathology 5 81–89


Short RV (1961) Steroid concentrations in the follicular fluid of mares at various stages of the reproductive cycle Journal of Endocrinology 22 153–163


Short RV (1964) Ovarian steroid synthesis and secretion in vitro Recent Progress in Hormone Research 20 303–340


Van Rensburg SJ and Van Niekerk CH (1968) Ovarian function, follicular oestradiol-17β, and luteal progesterone and 20α-hydroxy-preg-n-4-en-3-one in cycling and pregnant equines Onderstepoort Journal of Veterinary Research 35 301–308


Watson ED, Colston M and Broadley C (1995) LH and progesterone concentrations during diestrus in the mare and the effect of hCG Theriogenology 43 1325–1338

Younglai EV (1971) Steroid content of the equine ovary during the reproductive cycle Journal of Endocrinology 50 589–597