Production of interferon by the conceptus in red deer *Cervus elaphus*

K. J. Demmers¹, S. Kaluz†, D. W. Deakin², H. N. Jabbour³ and A. P. F. Flint†

¹Division of Animal Physiology, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; ²ADAS Rosemmaund, Preston Wynne, Hereford HR1 3PG, UK; and ³MRC Reproductive Biology Unit, Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh EH3 9EW, UK

A type I interferon secreted by early sheep and cow conceptuses is responsible for the maternal recognition of pregnancy in these species. Interferon-tau (IFNτ) acts locally on the maternal endometrium to prevent luteolysis and prolong progesterone secretion. The production of IFNτ was investigated in early pregnancy in red deer, *Cervus elaphus*. The oestrous cycles of 14 hinds were synchronized using intra-vaginal controlled internal progesterone-releasing devices. Hinds were run with a fertile stag, then slaughtered on either day 20 (n = 10) or day 22 after withdrawal of progesterone (n = 11). Conceptuses were recovered after uterine excision and flushing with sterile saline. Conceptus RNA was reverse transcribed and amplified by PCR using primers designed from highly conserved regions of ovine and bovine IFNτ genes. The resulting PCR products were cloned and fully sequenced. Sequence comparisons indicate that the transcript characterized is closely related to the IFNτ and interferon-omega genes of bovids and giraffe, showing > 85% nucleotide sequence homology and > 74% predicted amino acid similarity with previously cloned genes. Northern blot analysis of total conceptus RNA using a homologous IFNτ probe confirmed the high expression of IFNτ which is encoded by a transcript of approximately 1 kilobase. Anti-viral activity was measured in uterine flushes from pregnant hinds using a cytopathic effect inhibition assay (4.3 × 10³ ± 0.78 × 10³ IU ml⁻¹; n = 14), but was not detectable in flushes from non-pregnant hinds (n = 7), confirming that preimplantation red deer conceptuses release interferons. This is the first demonstration of IFNτ expression in a cervid conceptus and provides evidence that IFNτ may be involved in the maternal recognition of pregnancy in red deer.

Introduction

Many species of deer are rare, endangered or threatened in their natural habitats (IUCN, 1996) and this, together with the increasing importance of commercial deer farming, has led to an interest in applying techniques such as artificial insemination, in vitro fertilization and embryo transfer to deer (Waldhalm et al., 1989; Fennessy et al., 1990, 1994; Wildt 1992; Berg et al., 1995). However, embryo transfer experiments have not always led to a high percentage of live births (Waldhalm et al., 1989; Fennessy et al., 1994), indicating a need for further knowledge of the physiological processes underlying early pregnancy in deer.

As is the case in sheep and cattle, the red deer blastocyst remains unattached to the endometrium for a relatively long period after conception. The conceptus must communicate with the mother to prevent regression of the corpus luteum at the end of the luteal cycle, well before the time of blastocyst attachment to the maternal endometrium. In the domestic bovids, a type I interferon (IFN) secreted by the trophectoderm of the developing blastocyst has been identified as the embryonic signal responsible for preventing luteolysis (for review, see Roberts et al., 1992). This trophoblast interferon, interferon-tau (IFNτ), is most closely related to the 172 amino acid IFN-omega (IFNo) subclass of interferons (Imakawa et al., 1987), and has anti-viral and anti-proliferative properties (Roberts, 1989).

In sheep, the corpus luteum regresses as the result of release of the luteolytic hormone, prostaglandin F₂₀ (PGF₂₀), from the uterine endometrium late in the oestrous cycle (McCracken et al., 1972). A mixture of isoforms of IFNτ is secreted by the blastocyst into the uterine lumen (Godkin et al., 1982, 1984) which suppresses the normal pattern of pulsatile release of PGF₂₀ (Fincher et al., 1986) through inhibition of expression of oxytocin receptors in the uterine endometrium (Flint et al., 1991). This inhibition results in the prevention of luteolysis, ensuring the continued luteal secretion of progesterone required for the maintenance of pregnancy (Flint et al., 1994).

Characteristics of early conceptus development and endocrinology are not well established for red deer, *Cervus elaphus*. The hormonal basis of maternal recognition of
pregnancy remains unclear in cervids, although pregnancy is known to be dependent on maintenance of the corpus luteum (Asher et al., 1996) but interferons may be involved in the establishment of early pregnancy (Flint 1995). Systemic administration of exogenous IFNα delays luteal regression in red deer hinds (Bainbridge et al., 1996), as it does in sheep and cattle (Stewart et al., 1989a; Plante et al., 1991). Furthermore, uterine flushings from pregnant red deer hinds contain anti-viral activity, suggesting the presence of IFN (Flint, 1995; Flint et al., 1997).

The aim of the present study was to determine whether IFNα is expressed by preimplantation red deer blastocysts and to determine, by sequencing of cDNA, whether this protein is similar to that expressed in the Bovidae.

Materials and Methods

Animals

The study was conducted at ADAS Rosemaund Research Centre, Hereford (52°10’N) in autumn 1995. A total of 21 mature (4–7 years of age) red deer hinds (Cervus elaphus) with a mean (± SEM) live weight of 91.4 ± 2.3 kg were kept in fenced grass paddocks.

Experimental protocol

Oestrus was synchronized in each hind by administration of progesterone by intravaginal pessary (Controlled Internal Drug-Releasing (CIDR) device, type G; 0.3 g progesterone per device; CHH Plastic Products Group Ltd, Hamilton, New Zealand). The first CIDR device was inserted for 8 days and was replaced with a second device for 4 days. The time of withdrawal of the second device was taken as day 0, after which time hinds were run with a fertile stag. Animals were slaughtered on either day 20 (n = 10) or day 22 (n = 11), with the average live-weight of hinds slaughtered on each day being 91–92 kg. CIDR devices were inserted on 3 October 1995 (animals slaughtered on day 20) or 12 October 1995 (animals slaughtered on day 22).

Collection of embryos

The uterus was dissected from the surrounding tissue and the ovaries were checked for evidence of recent ovulation. The uterus was bisected at the cervical end and the two horns were separated. Sterile saline solution (10–20 ml) was injected into the tip of each uterine horn through a blunt needle inserted into the uterine lumen. The flushing solution containing the embryo was collected into a sterile container from the cervical end. The embryo was removed and the saline was frozen immediately on dry ice and kept at −70°C until needed for assay.

PCR and cloning of deer trophoblast interferon

Total RNA (5 µg) extracted (Chomczynski and Saachi, 1987) from blastocysts was primed with random hexamer primers (3 µg ml⁻¹, Gibco BRL, Uxbridge, Middlesex) and transcribed with Superscript RNase H reverse transcriptase (Gibco). Single-stranded cDNA (one-twentieth of total) was amplified by PCR, using the following primers designed from conserved areas of previously sequenced ovine and bovine IFNα genes: IFNα sense primer: 5’-GAG TAT CCT CAG YCA GCC CRG CAG C-3’ (Y = either C or T, R = G or A); IFNα anti-sense primer: 5’-CGA AGC TTC AAG GTG AGT TCA GAT CTC C-3’. The expected PCR product size using the IFNα primers was 635 base pairs (bp). A further sense primer, oTP-1 cDNA 5’ primer (after Nephew et al., 1993; 5’-CCT GTC TGC AGG ACA GAA AAG ACT T-3’) was used in combination with the IFNα anti-sense primer, to give an expected PCR product of 444 bp. Primer location relative to a potential cap site of IFNα cDNA (Nephew et al., 1993) was 30–54 for the IFNα sense primer, 637–664 for the IFNα anti-sense primer and 221–245 for the oTP-1 sense primer. PCR was carried out in 25 µl final volume using 0.625 U Taq DNA polymerase (Gibco), 2.5 µl 10 × buffer, 5 pM each primer, 1.5 mmol MgCl₂, 10 mmol l⁻¹ of each of the four dNTPs. The following profile was used in the Omnimgene Temperature Cycler (Hybaid, Teddington, Middlesex): 40 cycles of 94°C for 30 s, 60°C for 30 s and 72°C for 45 s. PCR products were purified after excision from a 1% low-melting point gel using the US Biocean MP kit (United States Biochemical, Cleveland, OH). PCR products were cloned into the p-GEM-T Easy Vector (Promega Ltd, Southampton) or pBluecript II KS (Stratagene Ltd, Cambridge) and amplified in JM109 cells (Promega). Plasmid DNA was extracted using the Wizard mini-prep system (Promega) and both strands were fully sequenced using an automatic DNA sequencer using both plasmid and internal primers (ABI 373A, Perkin-Elmer, Applied Biosystems, Foster City, CA). Blastocyst RNA was checked for DNA contamination by PCR under the conditions detailed above without reverse transcription. The Lasergene Software Package was used for sequence manipulation including contig alignment, multiple sequence alignment and sequence comparisons using the Clustal Algorithm (DNASTar Inc., Madison, WI).

Northern blot analysis of trophoblast RNA

Total RNA (20 µg) was separated on a 1% agarose-formaldehyde gel with an RNA marker (Promega) and transferred to Hybond N membrane (Amersham International Plc, Amersham, Bucks) by capillary blotting (Sambrook et al., 1989). A 635 bp PCR product raised from day 20 cDNA using IFNα sense and anti-sense primers (see above) was labelled using the Megaprime DNA labelling system and [α-³²P]dCTP (Amersham). Pre-hybridization was for 1 h and was followed by hybridization overnight at 42°C in solution containing 50% formamide, 5 × SSPE (20 × SSPE is 3.6 mol NaCl l⁻¹, 0.2 mol sodium phosphate l⁻¹, 0.02 mol EDTA l⁻¹, pH 7.4), 5 × Denhardt’s (100 × Denhardt’s is 2% BSA, 2% (w/v) Ficoll and 2% (w/v) polyvinylpyrrolidone), 0.5% (w/v) SDS and 100 µg ml⁻¹ denatured salmon sperm DNA (Sigma, Poole). Membranes were washed for 2 × 10 min at room temperature in 2 × SSC (0.3 mol NaCl l⁻¹ containing 0.03% mol sodium citrate l⁻¹); 0.1% (w/v) SDS; for 1 × 15 min.
at 65°C in 1 × SSC; 0.1% SDS; for 1 × 10 min at 65°C in 0.1 × SSC; 0.1% SDS, and then autoradiographed for 48 h. The RNA blot was washed in boiling 0.1% SDS to remove the probe and was re-probed with an 18S ribobprobe (Promega) labelled with [α-32P]dUTP (Amersham), with hybridization and washing to a stringency of 0.1 × SSC; 0.1% SDS at 65°C and autoradiographed for 12 h.

Anti-viral assay

Uterine flushings were analysed for anti-viral activity using a cytopathic effect inhibition assay (Meager 1987; Abayasekara et al., 1995). Briefly, cultures of Madin–Darby bovine kidney (MDBK) cells were exposed to dilutions of IFN standards or unknown samples before addition of Semliki Forest virus (SFV); the inhibitory effect of IFN on the cytopathic action of SFV was determined by measuring cell density. Each concentration of unknown was assayed in duplicate. All additions were made in culture medium containing 10% (v/v) fetal calf serum, 50 μg penicillin ml⁻¹, 50 μg streptomycin ml⁻¹ and 2 mmol l-glutamine l⁻¹ in minimal essential medium with Earle’s salts (Gibco); cultures were at 37°C in 5% CO₂ in air. The lowest concentration of SFV required to cause 100% cell death was initially determined by serial dilutions and culture under assay conditions, and this concentration was used throughout. Concentrations of bovine recombinant interferon-κ(1, (laboratory standard, Ciba-Geigy Ltd, Basel) were standardized against the First International Standard (1987), containing human recombinant IFNα2, obtained from the National Institute of Biological Standards and Control (Potters Bar, Herts). The potency of the laboratory standard was 1.57 IU ng⁻¹. Wells containing only cells (no virus controls) and cells plus virus (no IFN controls) were run on each plate and the mid-point between these values was used to calculate concentrations of IFN causing 50% inhibition of cytopathic effect. These end points were then expressed in terms of the International Standard and were corrected for flushing volume. The sensitivity of the assay was 50 IU ml⁻¹.

Statistical analyses

Results are expressed as means ± SEM. Comparison between amounts of anti-viral activity, measured in flushings from either day 20 or day 22 pregnant deer, was carried out using Student’s t test. Densitometric scans of northern blots probed with either IFNα or 18S were analysed by t test.

Results

Sequencing

Filamentous blastocysts were collected from five hinds on day 20 and nine hinds on day 22. RNA was extracted from four day 20 blastocysts and three day 22 blastocysts, and cDNA was prepared by reverse transcription. All samples showed amplification of the expected 635 bp product after PCR with the IFNα primers, and of the expected 444 bp product using oTP-1 sense and IFNα anti-sense primer (data not shown). The 635 bp PCR product from a day 20 cDNA sample was cloned into p-GEM-T, and the 444 bp PCR product from a different day 20 cDNA sample was cloned into pBluescript. Both clones were fully sequenced in both directions and the 444 bp sequence showed 100% nucleotide homology with a section of the 635 bp sequence. The blastocyst RNA samples used did not produce amplified products without earlier reverse transcription, indicating that the PCR products were not amplified from contaminating genomic DNA in the samples. The cDNA sequence and deduced amino acid sequence for *Cervus elaphus* trophoblast interferon (cvIFNα) obtained from the 635 bp clone are shown (Fig. 1). The sequence indicates that cvIFNα has a 585 nucleotide open reading frame and encodes a putative 23 amino acid signal sequence and a 172 amino acid mature protein that are characteristic of both IFNα and IFNβ.

Northern blot analysis

Northern blot analysis of total RNA from day 20 and day 22 blastocysts demonstrated the presence of an mRNA species of approximately 1 kilobase (kb) that hybridizes strongly to the [α-32P]dCTP-labelled IFNα cDNA (Fig. 2). The relative amount of total RNA in each sample is illustrated by hybridization to the 18S ribobprobe. Densitometric scanning showed that the IFN:18S RNA ratio decreased between days 20 and 22 (mean ratio: day 20 = 0.49; day 22 = 0.20), suggesting that IFN mRNA decreased relative to total RNA at this time (P < 0.05).

Anti-viral activity

The anti-viral activity measured in uterine flushings is illustrated (Table 1). Uterine flushes from pregnant hinds show significant amounts of anti-viral activity (4.3 × 10⁴ ± 0.78 × 10³ IU ml⁻¹; n = 14), with those from non-pregnant hinds showing undetectable amounts (< 50 IU ml⁻¹, n = 7). No significant difference in anti-viral activity was observed in the uterine flushings collected from day 20 and day 22 pregnant hinds (P > 0.1).

Discussion

The presence of significant anti-viral activity in uterine flushes from pregnant hinds indicates that red deer blastocysts release interferons, with amounts reported in the present study being comparable with those measured by Flint et al. (1997) from pregnant red deer hinds culled on the Isle of Rum. In domestic ruminants, the presence of IFNα is reflected in anti-viral activity detected in uterine flushes (Pontzer et al., 1988; Roberts et al., 1989). However, amounts of anti-viral activity in red deer are lower than those measured in bovid, in which concentrations may reach 10⁶ units ml⁻¹ (Flint et al., 1994). Lower anti-viral activity may be consistent with high endometrial sensitivity to IFNα.
The presence of anti-viral activity in uterine flushings does not prove that a previously uninvestigated species produces blastocyst interferons that act as anti-luteolysins. Production of low concentrations of IFN by early conceptuses (usually detected as anti-viral activity) has been reported in a range of non-ruminant species (Roberts et al., 1990). This finding indicates that IFN production during pregnancy may be a fairly general phenomenon (Leaman and Roberts, 1992) with IFNs playing a role in the viral protection of conceptuses at the time of implantation (D’Andrea et al., 1994). The pig conceptus spontaneously and intensively secretes IFN between day 12 and day 20 of pregnancy (Cross and Roberts 1989; Mirando et al., 1990). However, in pigs, there is no homologous IFN mRNA expression in the conceptus (Charlier et al., 1989), as has been shown in deer. The size of the cvIFN mRNA (about 1 kb), as measured by northern blotting, is consistent with the size of IFN mRNA in sheep and cattle (Charlier et al., 1989; Stewart et al., 1989b). Amounts of mRNA encoding cvIFNt are lower in day 22 than day 20 blastocysts, which is in agreement with data.
Table 1. Summary of results showing anti-viral activity of uterine flushes (iu ml⁻¹) on day 20 and day 22 after removal of controlled internal drug-releasing devices in pregnant and non-pregnant red deer hinds

<table>
<thead>
<tr>
<th></th>
<th>Pregnant</th>
<th>Non-pregnant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 20</td>
<td>3.8 x 10³ ± 8.9 x 10²</td>
<td>nd (n = 5)</td>
</tr>
<tr>
<td>Day 22</td>
<td>4.7 x 10² ± 1.1 x 10³</td>
<td>nd (n = 2)</td>
</tr>
</tbody>
</table>

n, number of hinds; nd, not detectable (anti-viral activity below sensitivity of assay).

Table 2. Comparison of sequence similarities of IFNα and IFNβ in Ruminantia

<table>
<thead>
<tr>
<th>Accession number</th>
<th>CvIFNα</th>
<th>BoIFNα</th>
<th>OvIFNα</th>
<th>CalIFNα</th>
<th>OmIFNα</th>
<th>GiIFNα</th>
<th>BoIFNβ</th>
<th>OvIFNβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CvIFNα</td>
<td>87.4</td>
<td>85.5</td>
<td>85.4</td>
<td>85.4</td>
<td>85.9</td>
<td>87.4</td>
<td>88.8</td>
<td></td>
</tr>
<tr>
<td>*BoIFNα</td>
<td>81.1</td>
<td>88.8</td>
<td>88.3</td>
<td>88.3</td>
<td>89.5</td>
<td>99.0</td>
<td>84.5</td>
<td>M31556</td>
</tr>
<tr>
<td>*OvIFNα</td>
<td>78.1</td>
<td>81.6</td>
<td>96.3</td>
<td>93.2</td>
<td>85.5</td>
<td>88.8</td>
<td>82.5</td>
<td>M88773</td>
</tr>
<tr>
<td>*CalIFNα</td>
<td>74.0</td>
<td>80.6</td>
<td>90.8</td>
<td>94.0</td>
<td>85.0</td>
<td>88.3</td>
<td>82.1</td>
<td>M73243</td>
</tr>
<tr>
<td>*OmIFNα</td>
<td>75.5</td>
<td>80.6</td>
<td>87.8</td>
<td>88.3</td>
<td>84.7</td>
<td>88.4</td>
<td>83.0</td>
<td>M73244</td>
</tr>
<tr>
<td>*GiIFNα</td>
<td>78.6</td>
<td>85.2</td>
<td>77.0</td>
<td>75.5</td>
<td>89.5</td>
<td>82.1</td>
<td>84.7</td>
<td>M60913</td>
</tr>
<tr>
<td>*BoIFNβ</td>
<td>81.1</td>
<td>98.0</td>
<td>82.1</td>
<td>81.1</td>
<td>85.2</td>
<td>85.9</td>
<td>88.8</td>
<td>U55050</td>
</tr>
<tr>
<td>*OvIFNβ</td>
<td>80.6</td>
<td>75.0</td>
<td>70.9</td>
<td>68.4</td>
<td>69.4</td>
<td>70.9</td>
<td>74.5</td>
<td>X59067</td>
</tr>
</tbody>
</table>

Percentage nucleotide sequence (upper right) and amino acid sequence (lower left) similarities between each pair of IFN in the coding region are shown. Where multiple clones of IFNα have been isolated from a single species, the clone that has highest sequence similarity to deer IFNα was chosen for this comparison. Cc, Cervus elaphus; Bo, Bos taurus; Ov, Ovis aries; Ca, Capra hircus; Om, Ovis moschatus; Gd, Giraffa camelopardalis. Sequence data are from: ¹Imakawa et al., 1989; ²Nephew et al., 1993, ³Leanman and Roberts, 1992, ⁴Liu et al., 1996 and ⁵Hansen et al., 1991.
gene rather than from IFN\text{\texttau} mRNA is unlikely, as genomic DNA contamination of the RNA used was ruled out. However, it is possible that the high amount of mRNA detected in the blastocyst represents an IFN\text{\textalpha} also expressed in the adult. Owing to the high expression of IFN mRNA in the red deer blastocyst, and in view of the sequence similarity between IFN\text{\texttau} and IFN\text{\textalpha}, the term IFN\text{\texttau} has been used to describe the transcript isolated here.

The similarity of cvIFN\text{\texttau} to ovine and bovine IFN\text{\textalpha} may explain why Leaman and Roberts (1992) were unable to isolate an IFN\text{n} gene from white-tailed deer (Odocoileus virginianus) genomic DNA by PCR, despite Southern blotting indicating that this species was likely to possess such a gene. The primers used were designed to reduce the probability of amplifying IFN\text{\textalpha} genes instead of IFN\text{\texttau} genes.

The predicted primary sequence of cvIFN\text{\texttau} includes cysteine residues at positions 1, 29, 99 and 139. The cysteine residues at these four sites are conserved in all other mammalian IFN\text{\textalpha}, IFN\text{\textbeta} and IFN\text{\textgamma}, except for giraffe IFN\text{\texttau} which lacks Cys99 (Liu et al., 1996), and they form two specific disulphide bridges (Cys1–Cys99 and Cys29–Cys139) in human IFN\text{\textalpha} (Wetzel, 1981). The cysteine residues at positions 29 and 139 are essential for anti-viral activity (Shafferman et al., 1987). Most IFN\text{\texttau} have a fifth Cys at position 86 which is absent from the cvIFN\text{\texttau} reported here. However, the musk ox IFN\text{\texttau} also lacks this Cys (Leaman and Roberts 1992). In both the musk ox sequence and the sequence reported here, this Cys is replaced by an Arg residue, as it is in sheep IFN\text{\textalpha} (Nephew et al., 1993); in bovine IFN\text{\textalpha}, there is a Leu at this position (Hansen et al., 1991).

The translation initiation sequence TCCCC is identical to that of bovine IFN\text{\textalpha}, and the sequence of the signal peptide differs by only two amino acids (Val11→Ala; Gly20→Ser) when compared with ovine and bovine IFN\text{\texttau} genes. A peptidase recognition site (Ser-Leu-Gly) is present at the junction between the signal peptide and the mature protein, as in all other IFN\text{\texttau} and IFN\text{\textalpha}. CviIFN\text{\texttau} does not contain a potential site for N-glycosylation as do bovine and certain ovine IFN\text{\texttau} (Klemm et al., 1990).

Bovine IFN\text{\texttau} genes are approximately 30, 50 and 75% identical in primary amino acid sequence to the IFN\text{\textbeta}, IFN\text{\textgamma}, and IFN\text{\textalpha}, respectively, within the same species (Roberts et al., 1992). However, whereas the genes for the IFN\text{\textgamma} are widely distributed among mammalian species, those for IFN\text{\textalpha} seem to be restricted to the Ruminantia suborder of the Artiodactyla and probably evolved from the IFN\text{\textalpha} between 30 and 65 million years ago (Leaman and Roberts, 1992). The IFN\text{\texttau} share a high degree of amino acid and nucleotide sequence identity and differ from the IFN\text{\textalpha} in the 3’ non-coding regions of the genes (Roberts et al., 1991). It remains to be elucidated whether the 3’ end of cvIFN\text{\texttau} is more similar to the IFN\text{\textalpha} or IFN\text{\textgamma} of the Bovidae; and whether IFN\text{\texttau} is expressed only in the trophoderm. An IFN\text{\texttau} gene has been isolated from genomic DNA of giraffe (Giraffa camelopardalis), a non-bovid species (Liu et al., 1996). This gene shows >85% deduced amino acid sequence identity with bovine IFN\text{\texttau} and >78% with cvIFN\text{\texttau}. Bovids (antelope and domestic species such as sheep, cows and goats), cervids (deer, pronghorns and moschids) and the Giraffidae (giraffe and okapi) are all members of the infraorder Pecora of the Ruminantia (Young, 1981). The presence of IFN\text{\texttau} in all these groups suggests the evolution of this form of pregnancy signalling before the radiation of the separate families. It would be of interest to know whether the chevrotains express IFN\text{\texttau}; if they did, this would imply that all Pecoran families have these characteristics.

The oestrous cycle of red deer shows many similarities to that of domestic ruminants, being characterized by well delineated follicular, luteal and luteolytic phases (Asher and Fisher, 1991). The non-pregnant red deer is seasonally polyoestrous, exhibiting regular 18 day cycles (Guinness et al., 1971), with the onset of the breeding season occurring during the autumn. In sheep, oxytocin secreted by the corpus luteum acts at uterine oxytocin receptors to stimulate pulses of endometrial PG\textsubscript{2\alpha} secretion. The PG\textsubscript{2\alpha} in turn acts on the corpus luteum to release further oxytocin in a utero-ovarian positive feedback interaction that culminates in luteolysis (for review, see Flint et al., 1992). The time at which luteal regression occurs is influenced by the time at which oxytocin receptors are generated in the uterus (Sheldrick and Flint, 1985). Spontaneous luteolysis in red deer has been shown to involve synchronous pulsatile secretion of oxytocin and PG\textsubscript{2\alpha} and may be initiated by a similar positive feedback interaction between the uterus and the corpus luteum (Bainbridge and Jabbour, 1997). It is not yet known how IFN\text{\textalpha} acts to prevent luteal regression in red deer, although IFN\text{\textalpha} treatment suppresses the pre-luteolytic increase in endometrial oxytocin sensitivity (Bainbridge et al., 1996; Bainbridge and Jabbour, 1997). Oxytocin receptor concentrations in the caruncular endometrium of red deer hinds are lower in pregnant than in non-pregnant hinds (Flint et al., 1997). IFN\text{\texttau} in red deer may block the stimulatory effect of circulating oxytocin on secretion of PG\textsubscript{2\alpha} by inhibition of oxytocin receptor gene expression in the endometrium, as occurs in sheep (Mirando et al., 1993) and, as a result, the corpus luteum formed after ovulation becomes the corpus luteum of pregnancy.

The authors thank M-J. Searle, Royal Free Hospital, London, for assistance with the interferon assay; J. McVerry, MRC, Edinburgh, for help with the 18S probe; M. Kaluzova and P. Fisher for help with the northern blot analysis and PCR; and staff at ADAS Rosemaund, Hereford for assistance with administering treatments and handling the deer. The financial support from MAFF is gratefully acknowledged. The sequence data contained in this paper is available in the EMBL nucleotide sequence database under the accession number AJ000638.

References

Abayasekara DRE, Sheldrick EL, Flicksmith HC and Flint APF (1995) Role of protein kinase C in the inhibitory action of trophoblast interferons on expression of the oxytocin receptor in sheep endometrium Endocrine 3 151–158

Asher GW and Fisher MW (1991) Reproductive physiology of farmed red deer (Cervus elaphus) and fallow deer (Dama dama). In Wildlife Production, Conservation and Sustainable Development pp 474–484 Eds LA Benczecker and PJ; University. Howard of Alaska; Fairbanks

Bainbridge DRJ and Jabbour HN (1997) Effect of pregnancy and exogenous interferon on synchronous pulsatile release of oxytocin and luteolytic
Production of interferon by the conceptus in red deer

prostaglandin \(F_2 \) in red deer (Cervus elaphus) Journal of Reproduction and Fertility 111 299–307

Cross JC and Roberts R (1989) Porcine conceptuses secrete an interferon during the pre-attachment period of early pregnancy Biology of Reproduction 40 1109–1118

Fennessy FF, Asher GW, Beaton NS, Dixon TE, Hunter JW and Bringans MJ (1994) Embryo transfer in deer Theriogenology 41 133–138

Flint AFP (1985) Interferon, the oxytocin receptor and the maternal recognition of pregnancy in ruminants and non-ruminants – a comparative approach Reproduction, Fertility and Development 7 313–318

Flint AFP, Lamming GE, Stewart HJ and Abayasekara DRE (1994) The role of the endometrial oxytocin receptor in determining the length of the sterile oestrous cycle and ensuring maintenance of luteal function in early pregnancy in ruminants Philosophical Transactions of the Royal Society of London Series B – Biological Sciences 344 291–304

Godkin JD, Bazer FW and Roberts RM (1984) Ovine trophoblast protein 1, an early secreted blastocyst protein, binds specifically to uterine endometrium and affects protein synthesis Endocrinology 114 120–130

IUCN (1996) IUCN Red List of Threatened Animals Eds J Baillie and B Groomebridge, IUCN, Gland, Switzerland

Klemm SW, Imakawa K and Roberts RM (1990) Sequence variability among ovine trophoblast interferon cDNA Nucleic Acids Research 18 6724

Leaman DW and Roberts RM (1992) Genes for the trophoblast interferons in sheep, goat and musk ox and distribution of related genes among mammals Journal of Interferon Research 12 1–11

McCracken JA, Carlson JC, Glew ME, Goding JR and Baird DT (1972) Prostaglandin F2α, identified as a luteolytic hormone in sheep Nature New Biology 238 129–134

Roberts RM, Cross JC and Leaman DW (1992) Interferons as hormones of pregnancy Endocrine Review 13 432–452

Sheldrick EL and Flint AFP (1985) Luteal oxytocin and the control of prostaglandin \(F_2 \) secretion during luteolysis in ewes Journal of Endocrinology Supplement 107 89

Stewart HJ, McCann SHE, Northrop AJ, Lamming GE and Flint AFP (1989b) Sheep anti-luteolytic interferon – cDNA sequence and analysis of mRNA levels Journal of Molecular Endocrinology 2 65–70

Walsham SJ, Jacobson HA, Dhungel SK and Bearden HJ (1989) Embryo transfer in the white-tailed deer – a reproductive model for endangered deer species of the world Theriogenology 31 437–450

Downloaded from Bioscientifica.com at 11/25/2018 09:37:41PM via free access