Evaluation of cholesteryl ester transfer in the seminiferous tubule cells of immature rats in vivo and in vitro

M. Fofana, C. Travert, S. Carreau and D. Le Goff*

Laboratoire de Biochimie, Université de Caen, F-14032 Caen, France

Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute a barrier to the movement of plasma lipoproteins. The present study was undertaken to evaluate in vivo and in vitro the high density lipoprotein (HDL) cholesteryl ester transfer from plasma to seminiferous tubule cells in the testis of 30-day-old rats. Firstly, the transfer of HDL cholesteryl oleate from plasma to testicular compartments was evaluated and, secondly, the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells was investigated. At 2 h after the administration of HDL reconstituted with [3H]cholesteryl ester, dimyristoyl phosphatidylcholine and apolipoproteins, the tissue space in the interstitial cells (740 ± 60 µl g⁻¹ cell protein) was fourfold higher than that in the seminiferous tubule cells (170 ± 10 µl g⁻¹). Sertoli cells were isolated and incubated with [3H]cholesteryl ester HDL reconstituted with apolipoprotein A-I or E to evaluate the mechanisms of cholesteryl ester influx. At the same apolipoprotein concentration (50 µg apolipoprotein ml⁻¹ medium), the uptake of [3H]cholesteryl oleate from phospholipid–apolipoprotein E vesicles was twofold higher than that with phospholipid–apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesteryl ester from apolipoprotein E vesicles but not with apolipoprotein A-I vesicles, indicating that uptake of apolipoprotein A-I vesicles via a secretion of apolipoprotein E by the cells themselves was not involved. These results demonstrate that plasma lipoprotein cholesterol is able to cross the testis lamina propria and that Sertoli cells take up cholesteryl ester for seminiferous tubule cell metabolism mainly via an apolipoprotein E pathway.

Introduction

The transport of hydrophobic constituents from plasma to interstitial cells is currently attributed to albumin and lipoproteins. Lipoproteins play a major role in the transport of cholesterol, glycerol esters, vitamins, steroid esters (Lavallée et al., 1996), lipophilic xenobiotics such as carcinogens (Polyakov et al., 1996) and drugs (Rifai et al., 1996). Low density lipoproteins (LDL) via the apolipoprotein B-E receptor and high density lipoproteins (HDL) via the class B type I scavenger receptor (SR-BI) deliver cholesterol to peripheral tissues for membrane renewal and steroid hormone production (Schreiber et al., 1982; Acton et al., 1996). The relative contribution of lipoprotein cholesterol to steroid production varies according to steroidogenic cells. In adrenocortical cells, a system of fenestrated capillaries allows the easy passage of LDL and HDL and the high expression of SR-BI receptors supports the hypothesis that plasma lipoprotein is the preferential source of cholesterol for steroidogenesis (Landschulz et al., 1996; Temel et al., 1997; Azhar et al., 1998).

In the testis, the capillary wall constitutes the first barrier for the transfer of plasma lipoproteins to the interstitium and the Leydig cells. Testicular capillaries are characterized by a continuous layer of endothelial cells, which are connected by tight junctions (Mayerhofer et al., 1989). A system of plasmalemmal vesicles allows the passage of LDL and HDL to the interstitial compartment. Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute the lamina propria. Serum albumin administered to rats penetrates the lamina propria and accumulates in the Sertoli cells (Everett and Simmons, 1958; Christensen et al., 1985). The transport of lipoprotein constituents from plasma to seminiferous tubule cells has not been demonstrated. In the ovary, which presents a similar basal membrane, the blood–follicle barrier behaves like a molecular sieve which allows the passage of HDL in inverse proportion to the molecular mass (Le Goff, 1994). Therefore, the ability of lipoproteins to penetrate the testis lamina propria should be similar.

Sertoli cells extend from the basement membrane to the tubular lumen. Tight junctions exclude the diffusion of HDL from interstitial medium to the germ cells and transfer of
hydrophobic constituents such as cholesteryl ester involves an endocytic pathway through the Sertoli cell membrane. The aim of the present study was to investigate: (i) the in vivo transfer of HDL cholesteryl ester from plasma to testicular compartments in 30-day-old rats; and (ii) the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells.

Materials and Methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM) and trypsin (USP grade) were from Gibco (Cergy Pontoise); collagenase dispase was from Boehringer-Mannheim (Meylan). Soybean trypsin inhibitor, bovine pancreas deoxyribonuclease (DNase), hyaluronidase (type I-S), dimyristoyl l-α-phosphatidylcholine and cholesteryl myristate were from Sigma (Saint-Quentin Fallavier). Centrisart I with 20 kDa cut-off ultrafilter was from Sartorius (Les Ulis) and all other reagents were of analytical grade.

[3H]cholesteryl ester reconstituted HDL

Labelled reconstituted HDLs were obtained after incubation of total HDL apolipoproteins (in vitro experiments) or purified apolipoproteins A-I or E (in vitro experiments) with dimyristoyl l-α-phosphatidylcholine, cholesteryl myristate and [3H]cholesteryl oleate. Briefly, HDL (density range 1.074–1.155 g ml–1) from pooled rat sera were isolated by sequential ultracentrifugation (Havel et al., 1955), dialysed against 1 mmol ammonium carbonate l–1, lyophilized and lipids were removed according to the procedure of Brown et al. (1969). HDL apolipoproteins were subjected to chromatography on a heparin affinity column (Brown et al., 1969). Aliquots of dimyristoyl l-α-phosphatidylcholine, cholesteryl myristate and [3H]cholesteryl oleate (1.78 TBq mmol–1) was from Amersham (Les Ulis) and all other reagents were of analytical grade.

 Determination of cholesterol transfer in vivo

A total of 27 male Sprague-Dawley rats aged of 20–30 days were obtained from our colony. Rats were anaesthetized with sodium pentobarbital. Labelled reconstituted HDL were injected through the femoral vein. After 2 h, the rats were killed, exsanguinated and the testes were removed. Interstitial cells, peritubular cells and Sertoli–germ cell enriched aggregates were isolated by sequential enzymatic digestions at 32°C as described by Tung et al. (1984). Briefly, the capsules were removed from the testes and they were treated with trypsin (1.0 mg ml–1) and DNase (0.02 mg ml–1) in DMEM for 20 min at 32°C. After addition of 0.1 mg soybean trypsin inhibitor ml–1, interstitial cells were recovered by unit gravity sedimentation. The remaining seminiferous tubules were washed twice, subjected to enzymatic digestion using a mixture of collagenase dispase (0.5 mg ml–1) and testicular hyaluronidase (1 mg ml–1), and the peritubular cells and Sertoli–germ cell aggregates were collected by unit gravity sedimentation. The protein content of samples was determined by the bicinchoninic acid procedure (Smith et al., 1985). Cell lipids were extracted by the procedure of Hara and Radin (1978). Lipids were separated by thin layer chromatography and [3H]cholesterol spots were counted. The tissue space was expressed in terms of the plasma volume that would contain the same amount of radio-labelled compounds (Koelz et al., 1982). The tissue space was calculated as follows: (d.p.m. of cell [3H]cholesterol g –1 cell protein) × (µl plasma per d.p.m. of plasma [3H]cholesterol); values are expressed as µl plasma g–1 cell protein. Data from these experiments are presented as the equivalent plasma space attained by cholesterol in each type of cell after 2 h. The evaluation of cholesterol transfer from plasma HDL to seminiferous tubule cells was calculated as the ratio of seminiferous tubule cell d.p.m. to the mean of plasma HDL specific radioactivity.

Sertoli cell culture

Sertoli cells were obtained from the testes of 40 rats (20 days old, Sprague-Dawley) by sequential enzymatic digestions at 32°C as described by Maboundou et al. (1995). Approximately 250 000 cells cm–2 were plated onto 25 cm2 plastic flasks to obtain confluent cultures. Cells were maintained in a humidified atmosphere containing 3% CO2 at 32°C. After 48 h, the culture medium was replaced with fresh medium without ultroser SF (steroid-free serum substitute). On day 3, germ cells were removed by hypotonic treatment as described by Galdieri et al. (1981).
Determination of cholesterol influx

On day 4, confluent monolayers were incubated with [3H]cholesterol ester reconstituted HDL for 4 h at 32°C in the presence or absence of 5 mg heparin ml⁻¹ medium. At the end of incubation, the medium was aspirated and the cells were washed twice with cold BSA medium (2.5 mg BSA ml⁻¹ cold DMEM) and once with cold PBS. Cell lipids were extracted using the procedure of Hara and Radin (1978). Cell proteins were dissolved in 0.2 mol NaOH l⁻¹ (Brown et al., 1980). The protein content of samples was determined by the bicinchoninic acid procedure (Smith et al., 1985). An aliquot of the extracted lipids was counted to determine the total radioactivity incorporated into the cells. The influx was calculated as the apparent uptake of apolipoprotein and expressed as µg apolipoprotein per mg cell protein per 4 h incubation, as reported by Pittman et al. (1987).

Statistical analysis

Student's t test was used to compare the effect of heparin on uptake of cholesterol ester. Significance was assumed at \(P < 0.001, P < 0.01 \) or \(P < 0.05 \).

Results

Distribution of labelled cholesterol

The plasma decay of radioactivity after administration of [3H]cholesterol ester reconstituted HDL is shown (Fig. 1). A high proportion of the labelled HDL remained within the plasma: 81 ± 3% and 66 ± 5% at 1 and 2 h after injection, respectively. At 2 h after administration of [3H]cholesterol oleate reconstituted HDL, the tissue spaces were 740 ± 60, 150 ± 20 and 170 ± 10 µl g⁻¹ cell protein in the interstitial cells, the peritubular cells and the seminiferous tubule cells, respectively (Fig. 2). In the interstitial cells, the tissue space was fourfold higher than that in the peritubular and seminiferous tubule cells. Transfer of cholesterol ester between plasma and seminiferous tubule cells was estimated at approximately 25 ng mg⁻¹ cell protein in 2 h.

Role of apolipoproteins A-I and E in the uptake of cholesterol ester

Sertoli cells apparently took up appreciable amounts of cholesterol ester from phospholipid vesicles with apolipoprotein (Table 1). Uptake of cholesterol ester is expressed in terms of the amount of apolipoprotein E that would be delivered to the cells if the uptake was via internalization of HDL particles. At the same apolipoprotein concentration (50 µg apolipoprotein ml⁻¹ medium), the uptake of cholesterol ester with phospholipid–apolipoprotein E vesicles was twofold higher than that with phospholipid–apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesterol ester from apolipoprotein E vesicles but not apolipoprotein A-I vesicles, indicating that the uptake of apolipoprotein A-I vesicles via secretion of apolipoprotein E by the cells themselves was not involved. The cell content of [3H] cholesterol was determined after incubation with increasing concentrations of apolipoprotein E reconstituted HDL (Fig. 3). The shape of the concentration curve indicated that uptake of [3H]cholesterol oleate from phospholipid–apolipoprotein E vesicles occurred through saturable processes.

Discussion

In previous studies, transfer of plasma lipoprotein cholesterol has been estimated in the whole testes without separation of the interstitial compartment from the seminiferous tubules (Bravo et al., 1994; Woollett and Spady, 1998). Table 1 shows the effect of heparin on uptake by rat Sertoli cells of [3H]cholesterol oleate from reconstituted high density lipoprotein (HDL) containing apolipoproteins A-I or E.

Table 1. Effect of heparin on uptake by rat Sertoli cells of [3H]cholesterol oleate from reconstituted high density lipoprotein (HDL) containing apolipoproteins A-I or E

<table>
<thead>
<tr>
<th>Type of vesicle</th>
<th>Without heparin</th>
<th>With heparin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospholipid–apolipoprotein A-I</td>
<td>1.06 ± 0.18</td>
<td>1.07 ± 0.09</td>
</tr>
<tr>
<td>Phospholipid–apolipoprotein E</td>
<td>2.00 ± 0.20</td>
<td>1.32 ± 0.30</td>
</tr>
</tbody>
</table>

Cells were incubated for 4 h with reconstituted HDL apolipoproteins A-I or E (50 µg apolipoprotein ml⁻¹ medium) in the presence or absence of 5 mg heparin ml⁻¹. Superscripts indicate significant differences: a versus b: \(P < 0.001 \); b versus d: \(P < 0.05 \); c versus d: not significantly different.
experiments (of 131I albumin in the liver and adrenal gland, which many hours at different rates in various tissues. The amount spaces begins immediately after injection and continues for 30 min after i.v. injection and decreased progressively after 30 and 60 min. In contrast, many tissues (intestine, skin, muscle and testis) showed an increase in 131I-labelled albumin content over time. Among these tissues, the testis displayed the greatest increase at 60 min. It has been suggested that these observed differences can be explained, at least in part, by the testicular capillaries which are characterized by a continuous layer of endothelial cells (Mayerhofer et al., 1988).

In view of these observations, an incubation time of 2 h was used in the present study, which allows diffusion of cholesterol from plasma into the interstitial spaces and eventually into the seminiferous tubule spaces of the rat testicular tissue.

The data related to the tissue space values are the result of (i) the capacity of lipoprotein particles to cross the endothelial cells probably via the plasmalemmal vesicles; and (ii) the capacity of testicular cells to take up cholesterol through lipoprotein receptors. The results of the present study show that the cholesteryl ester from plasma to the seminiferous tubule cells is fourfold lower compared with the interstitial cells and, therefore, may be involved in membrane renewal by Sertoli cells and putatively by germ cells (Levallet et al., 1998). The inability of Sertoli cells to convert cholesterol to androgens excludes the participation of exogenous cholesterol in steroid production (Gregory and Dephilip, 1998). Rat Sertoli cells can convert testosterone into oestradiol, but such steroid production requires exogenous steroid precursors and not cholesterol (Wiebe et al., 1980).

HDL are known to exchange free cholesterol between the surface of HDL and the external sheet of cell plasma membrane without internalization of cholesterol (Johnson et al., 1991). In contrast, cholesteryl ester is a poorly exchangeable fraction and its transfer into the cell requires the internalization of lipoprotein particles by the LDL receptor, LRP receptor or binding of HDL to the SR-BI receptor. The present study was conducted to determine whether Sertoli cells take up cholesteryl esters of HDL reconstituted with apolipoprotein A-I or apolipoprotein E. Rat HDL contain apolipoprotein A-I that can mediate the uptake of HDL cholesterol ester via the SR-BI receptor (Acton et al., 1996; Temel et al., 1997). In rats, adrenal cells use the HDL cholesterol rather than LDL cholesterol (Hammami et al., 1991). In addition, a significant fraction of rat HDL contains apolipoprotein E that can modulate the uptake of free and esterified cholesterol through internalization of HDL via the LDL receptor family. In the whole testes, significant numbers of VLDL receptors (Oka et al., 1994) and LDL receptors (Yamazaki et al., 1996) have been detected. In addition, the presence of LRP receptors has been shown by immunocytochemical analysis in Sertoli cells (Igdoura et al., 1997).

The present study demonstrated that rat Sertoli cells have the capacity to take up HDL cholesterol for cell metabolism, mainly by an apolipoprotein E pathway. In humans, HDL contain mainly apolipoprotein A-I and low concentrations of apolipoprotein E. Although SR-BI receptors are present in Sertoli cells (Shiratsuchi et al., 1999), internalization of HDL containing mainly apolipoprotein A-I could be promoted by uptake of apolipoprotein E during its passage through the testicular interstitial fluid. Leydig cells and testicular

![Fig. 2. Tissue space of 3Hcholesterol in rat testicular cells at 2 h after i.v. administration of 3Hcholesteryl olate reconstituted high density lipoprotein (HDL). Each bar represents the mean ± SD of five experiments (n = 3 in each experiment).](image)

![Fig. 3. Uptake of cholesteryl ester from apolipoprotein E (apo E) reconstituted high density lipoprotein (HDL) by rat Sertoli cells. Sertoli cells were obtained from the testes of 20 rats per experiment. Values are the mean ± SD of two experiments.](image)
macrophages produce apolipoprotein E (Schleicher et al., 1993) and HDL rapidly picks up apolipoprotein E (Murdock and Breckenridge, 1995).

In summary, the findings of the present study show that the plasma lipoprotein cholesterol is able to cross the lamina propria of the immature rat testis and that the seminiferous tubule cells take up cholesteryl ester for cell metabolism in vivo and in vitro, mainly by an apolipoprotein E pathway.

References

Bravo E, Botham KM, Mindham MA, Hayes PA, Marinelli T and Cantafora A (1994) Evaluation in vivo of the differential uptake and processing of high density lipoprotein in vivo and in vitro in the rat Biochimica et Biophysica Acta 1215 93–102

Hara A and Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent Analytical Biochemistry 90 420–426

Koelz HR, Sherrill BC, Turley JD and Dietchy JM (1992) Correlation of low and high density lipoprotein binding in vivo with rates of lipoprotein degradation in the rat Journal of Biological Chemistry 257 8061–8072

Le Goff D (1994) Folicullar fluid lipoproteins in the mare: evaluation of HDL transfer from plasma to follicular fluid Biochimica et Biophysica Acta 1210 226–232

Mayerhofer A, Hikim APS, Batke A and Russell LD (1989) Changes in the testis microvascularus during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster Anatomical Record 224 495–507

Murdoch SJ and Breckenridge WC (1995) Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL Atherosclerosis 118 193–212

Oka K, Ishimura-Oka K, Chu MJ, Sullivan M, Krushkal J, Li WH and Chan L (1994) Mouse very low density lipoprotein receptor (VLDLr) cDNA cloning, tissue specific expression and evolutionary relationship with the low density lipoprotein receptor European Journal of Biochemistry 224 975–982

Rifai N, Chao FF, Pham Q, Thiessen J and Soldin SJ (1996) The role of lipoproteins in the transport and uptake of cyclopamine and dehydro- tacrolimus into HepG2 and Jurkat cell lines Clinical Biochemistry 29 149–155

Temel RE, Trigatti B, Demattos RB, Azhar S, Krieger M and Williams DL (1995) Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells Proceedings National Academy of Sciences USA 94 13 600–13 605

Downloaded from Bioscientifica.com at 11/17/2018 02:08:21AM via free access